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Lock Scaling Analysis on Intel® Xeon® Processors

CHAPTER 1
LOCK SCALING ANALYSIS ON INTEL® XEON®

PROCESSORS

1.1 INTRODUCTION
This white paper discusses the performance of locking algorithms and how they scale 
under contention on Intel® Xeon® processors. We compare the performance of 
contended locks on the Intel® Xeon® processor X5600 series and the Intel® Xeon® 
processor E5-2600 series under different conditions, and conclude with a list of recom-
mendations for better lock scalability.

1.2 LOCK SCALING ANALYSIS
Performance of a lock algorithm is typically measured by its throughput, that is, the 
number of locks the algorithm is able to complete successfully in a fixed window of 
time1. The latency is also a useful metric, but because the cumulative time it takes to 
complete lock processing is proportional to the inverse of the algorithm's throughput, we 
will focus on throughput as our metric. The other important metric for performance is 
how the throughput of the algorithm varies with the number of cores participating in the 
algorithm. We will use the term lock scaling to refer to the algorithm's sensitivity to core 
count.

Table 1-1. Configurations1

Notes:
1.For more information go to http://www.intel.com/performance

System 1 (Codenamed Westmere) System 2 (Codenamed Romley)

Processor Intel® Xeon® Processor X5680, 12MB 
L3 cache, 3.3GHz, 6.4GT/s Intel® 
QuickPath Interconnect, 6 cores per 
processor

Intel® Xeon® Processor E5-2680, 
20MB cache, 2.7Ghz, 8.0GT/s Intel 
QuickPath Interconnect, 8 cores per 
processor

Platform 12 cores enabled running at 2.66GHz 
with Intel® Turbo Boost Technology 
disabled, frequency scaling disabled, 
Intel® Hyper-Threading Technology 
disabled, 18GB of DDR3 1067Mhz 1GB 
DIMMs

12 out of 16 cores enabled running at 
2.7GHz with Intel® Turbo Boost 
Technology disabled, frequency scaling 
disabled, Intel® Hyper-Threading 
Technology disabled, 32GB of RAM in 
16 2GB DIMMs, 1333Mhz Samsung 
M393B5273CH0-YH9

Software Red Hat* Enterprise Linux* 6.0 (no 
updates) with updated Linux* 3.6.0 
kernel

Fedora* FC16 updated with Linux 
3.6.0 kernel

1. Throughput here refers to that of the overall algorithm and does not distinguish the rate of each individual 
thread's lock acquire throughput. This has subtle but key implications for how this throughput number is 
interpreted, especially when dealing with micro-benchmark measurements.

http://www.intel.com/performance
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Lock algorithms have been an active area of work over the past decades. A few of the 
key algorithms used in software today are summarized in Appendix A. A full analysis of 
the performance and scaling characteristics of each is beyond the scope of this paper. In 
this white paper, we focus on locking algorithms that have a “polling” component in their 
lock acquire phase. Such algorithms are most commonly used in software today. An 
example is a spinlock, where the algorithm repeatedly tests to see if the lock is available 
prior to its attempt to acquire the lock. We use the spinlock algorithm's scaling as a 
proxy for algorithms that have a polling phase (typically referred to as the “test” phase 
of a lock algorithm), where threads periodically poll a shared address in memory to 
determine the status of a resource1.
When a lock that has such a polling phase is heavily contended, the factor which most 
impacts scaling is the time it takes to sift through the polling threads when the lock 
address is being written. This is the primary component in the lock latency that degrades 
as the number of cores simultaneously polling the address increases. The poor scaling 
for an algorithm that polls a shared address in this way is an expected result of the 
polling. 
In our lock scaling proxy, the spinlock, each thread polls the address to determine when 
the lock is free. Another traditional lock example, the ticket lock, has each thread poll the 
address to determine when its turn to acquire the lock has arrived. Though there are 
definite performance differences between the two, the general degradation in the time 
spent polling as core count increases is common to both. For this reason, we believe that 
the analysis that follows is generally applicable to any algorithm that includes a compo-
nent where multiple threads are polling a shared address.
One additional point that we aim to convey is that understanding how a given algorithm 
behaves on a given system microarchitecture is not as simple as specifying the general 
type of lock algorithm and then measuring its behavior. It also depends on how the algo-
rithm is implemented in software. In particular, it depends on how the software's latency 
choices interact with underlying hardware latencies.

1.2.1 Factors to consider in lock scaling

1.2.1.1  Importance of software latency assumptions
In the analysis that follows, we will show results for a spread of latencies for two of the 
key latencies relevant to most lock algorithms:

1. The time that each thread spends in the critical section (critical section time). This 
latency represents how much work is done by a thread each time it acquires the lock.

2. The time each thread waits, after leaving the critical section, before attempting to 
enter the critical section again (re-entry time). This latency represents how much 
work, that is not relevant to the critical shared resources, is being done by each 
thread, while it does not own the critical section resource.

These two latencies are determined by how the software has chosen to partition and 
isolate its shared resources and can vary wildly in real applications, even when those 
applications are using the same general type of algorithm.
A micro-benchmark that aims to study lock performance cannot give a reasonable 
account of how a given lock algorithm will behave on real software, if the study of the 
micro-benchmark does not include a study of the sensitivity to these two work intervals 
and does not factor in whether the spread of latencies it has evaluated are representa-
tive of the application of interest.

1. This is in contrast to other types of algorithms that do not involve polling, such as sleeping locks.
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Expected behavior for a given algorithm is usually predictable at relatively long latencies 
for the units of time represented by these work intervals, but the same is not true when 
the work intervals are very short. It gets increasingly difficult to predict behavior as the 
software latencies are decreased, particularly when the unit of time represented by 
these work intervals begins to approach the hardware's underlying cache-to-cache 
transfer latencies. If a lock becomes heavily contended with such short intervals, and the 
software tries to force lock transfers to occur at a rate that is faster than the rate at 
which the hardware can perform a single cache-to-cache transfer, then behavior 
becomes non-deterministic.

1.2.1.2  Importance of thread count
When evaluating lock performance across platforms, it is important to bear in mind that 
there is a general trend of increasing the number of cores in the socket with each gener-
ation. Contention between threads will go up as the number of threads that can simulta-
neously compete is increased. When evaluated for expected latency, most lock 
algorithms, even those not explicitly covered here, will reveal some period in the overall 
time we expect for the algorithm to achieve an ownership transfer, where forward prog-
ress to the next lock owner of the lock address is impeded by the hardware's need to 
arbitrate between the competing threads. That arbitration is going to take longer, as 
threads running on the additional cores are added. If software persists in operating in 
modes where all the threads that hardware makes available are simultaneously 
attempting to use the same hardware resources, the observed scaling will degrade. This 
is inevitable. It is going to become increasingly important, going forward, that software 
account for this in its algorithms.

1.2.2 Lock scaling results
We now analyze the scaling performance of our proxy spinlock algorithm. We focus 
primarily on the difference between the Intel Xeon processor X5600 series and the Intel 
Xeon processor E5-2600 series. For a controlled experiment, we keep the same thread 
count (6 hardware threads per socket) across the two systems and use the same clock 
frequency for the processors on the two systems. In a normal platform-to-platform 
comparison, the processors will not be operating at the same frequency, and the idle 
latency differences observed will be different.
The relative throughput of the lock algorithm on the Intel Xeon processor E5-2600 series 
over the Intel Xeon processor X5600 series is plotted on the y-axis in the graphs shown. 
The x-axis shows the critical section time on a logarithmic scale, varying from 10ns to 
500ns. Each curve corresponds to a different re-entry time (varying from 10 ns to 500 
ns).
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1.2.2.1  Lock scaling with >200ns critical section times

The graph shows two distinct regions. When critical section times exceed 300 ns (right 
side of the graph), the Intel Xeon processor E5-2600 series transfers spinlock ownership 
at a slower rate (in general about 8-12% slower) than the Intel Xeon processor X5600 
series for all re-entry times. The variation is sharper (up to 18%) when the critical 
section time falls in the 200 ns to 300 ns interval. Evidence of volatility in the behavior 
on both processors being compared is also beginning to show itself at the lower end of 
the critical section time range, as some of the curves begin to diverge from the general 
trend.
At higher critical section and re-entry times, the locks are lightly contended. In this 
scenario, the performance difference observed is due to the differences in the idle cache-
to-cache transfer latencies. The Intel Xeon processor E5-2600 series implements a ring 
architecture to support more cores, which results in slightly longer idle cache-to-cache 
transfer latencies (by about 6 ns at 2.7GHz frequency when both cores are in the same 
socket). The 8-12% delta, on the right end of the curve, tracks roughly what one would 
expect, based on those idle latency differences.

Figure 1-1. Single-socket contended spinlock performance (the Intel® Xeon® processor 
E5-2600 series over the Intel® Xeon® processor X5600 series) at the same-
frequency (2.7GHz) and same thread count (6 threads participating) for 
critical section times from 200ns to 500ns



Reference Number: 328878-001, Revision: 1.01 9

Lock Scaling Analysis on Intel® Xeon® Processors

1.2.2.2  Lock scaling with <200ns critical section times

We now analyze spinlock scaling when the critical section time is less than 200 ns. 
As we can see in the graph, there is no clear trend in locking algorithm performance at 
lower critical section times, though the results converge better in the 50-100ns range. 
Several factors contribute to the low performance numbers being reported by the micro-
benchmark test, and we focus on two key factors in this discussion.
The first factor is due to changes in how the Intel Xeon processor E5-2600 series 
processes snoop invalidations compared to the Intel Xeon processor x5600 series. On 
Intel Xeon processor E5-2600 series, the snoop invalidations arrive faster than on the 
Intel Xeon processor X5600 series. This occurs due to enhancements in the Intel Xeon 
processor E5-2600 series microarchitecture, where the inter-core ownership transfers 
can occur sooner than on the Intel Xeon processor X5600 series. 
The impact of this change shows up in the extremely contended case where a thread on 
an Intel Xeon processor X5600 series may re-acquire the lock it just released, and 
perform multiple updates before any other thread gets an opportunity to successfully 
acquire the lock. In contrast, on an Intel Xeon processor ES-2600 series-based system, 
because of the faster snoop invalidations, other threads get a better chance of acquiring 
the lock before the releasing thread re-acquires the lock. This causes a perceived reduc-
tion in throughput when the Intel Xeon processor ES 2600 series is compared to the Intel 
Xeon processor X5600 series. However, this is misleading because benchmarking a 
thread's ability to quickly pass lock ownership back to itself in the face of contention with 
other threads is not likely to be representative of realistic application behavior. This is 
particularly true because in general the performance of workloads that share data is 
improved when cache-to-cache transfer latency is reduced.
The second factor is due to other micro-architecturally unique features on both the Intel 
Xeon processor E5-2600 series and the Intel Xeon processor X5600 series that cause 
non-deterministic performance behavior when these intervals are very low. This non-
determinism shows itself, in the above graph, where the lines that represent different re-
entry times cross each other as critical section time decreases.

Figure 1-2. Single-socket contended spinlock performance (the Intel® Xeon® processor 
E5-2600 series over the Intel® Xeon® processor X5600 series) at the same-
frequency (2.7GHz) and same thread count (6 threads participating) for 
critical section times from 10ns to 100ns
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1.2.2.3  Applicability of the analysis
In general, this analysis should apply to any locking algorithm that involves multiple 
threads polling a shared address waiting for a particular value to be written to that 
address. When such a lock algorithm takes the work interval close to zero, one can 
expect performance degradation and unpredictability. 
When predictable performance is desired, such a lock algorithm needs reasonably long 
critical section and re-entry times. In a software implementation that takes either of 
those down to very small values, results become unpredictable and a tightly contended 
lock is guaranteed not to scale properly.1

1.3 LOCK COARSENING

1.3.1 Lock granularity
Traditionally, lock optimization has tried to reduce the length of lock regions to minimize 
lock contention. This is done to minimize the blocking time for other threads waiting on 
the lock. For optimized code that already has short lock regions, the time to transfer the 
cache line of the lock between threads, when unlocking and relocking, can start to domi-
nate when there is even moderate contention on any of the locks. This is more visible as 
the system gets larger.
The following diagram compares the effects of a contended longer lock region with a 
short lock region. With the short lock region, more time is spent communicating, that is, 
transferring the lock cache line between cores. The longer lock region has potentially 
longer block times, but minimizes the communication overhead of transferring the lock 
too frequently. This is a simple case with only two threads. With more cores in each 
socket, the queueing delays of transferring will increase. Similarly, on larger systems 
that have more sockets, the communication delays will also increase. Having too many 
small lock regions increases communication overhead, while having too many large lock 
regions increases blocking time.

1. An additional point is that when these software latencies are too short, results may sometimes show what 
appears to be stellar "average" scaling by allowing a few threads to monopolize the resource, while starv-
ing out others. The latter can be observed, for example, if one uses, as one's metric for lock performance, a 
micro-benchmark that has every thread cycle through atomic operations to the same address as fast as pos-
sible with no regard for what value is being written or read, and with no regard for critical section time or 
re-entry time. Such a micro-benchmark is not very informative.
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Consider a program that does a variable number of constant-size operations inside the 
lock. In a test program, we do hashes. Multiple threads lock each other out. Each thread 
can do work only when the other threads are waiting on the lock. Now, we vary the 
number of hashes inside the lock region and measure the total work done. For this test, 
increasing the length of the lock region improves the total amount of work. We get the 
best total result for a long lock region.

There is clearly a trade-off. Making the lock regions too large will increase blocked time 
again. But making them too small increases the communication overhead too much. 
Batching locks is a good idea. The best region size depends on the workload, but it is 
neither very small nor extremely large. We need to somehow find the critical section size 
that is “just right”.
Programs that are already highly optimized for scaling with fine grained locking often 
have very short lock regions. This can give good performance, but when there is a situ-

Figure 1-3. Comparing the effects of a contended longer lock region with a short lock 
region
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Figure 1-4. Lock region length vs. work
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ation where the lock contention increases on one of these very short lock regions, the 
performance may suffer dramatically. One example of this would be a hash table with 
per hash bucket locking and a short critical region accessing the data in the hash table 
under the lock. Normally, because the hash values are well distributed, there is no 
contention on the bucket lock and the system will scale well. However, when there is a 
workload that has hash collisions on hot entries, the lock contention may go up dramat-
ically on the bucket with the collision and perform poorly because the critical region is 
small. In this case, fine-grained locking can be a liability. 
A common situation where this can happen is packet processing when each packet 
received is processed individually and takes its own read locks to look up the global 
state. Batching the locks and processing multiple packets (or larger packets, for 
example, as generated by Large Receive Offloading (LRO) of the NIC) per lock acquisi-
tion, can improve scaling by increasing the size of the critical region and lowering the 
number of local acquisitions. This is called “batching the lock” or “lock coarsening”. 
Similar techniques can be applied to other queue processing code patterns.

1.3.2 Fairness and unfairness
As shown earlier, though a spinlock algorithm cannot ensure fairness, the amount of 
unfairness observed by a spinlock can vary with the microarchitecture. A microarchitec-
ture that is less fair will give natural batching to lock regions that are too short, because 
unfair lock acquisition will tend to reacquire the lock on the same thread multiple times 
in a row. This can improve performance with lock regions that are too short by mini-
mizing communication costs (as shown above), but at the cost of fairness. As long as the 
unfairness does not lead to starvation, this may be acceptable, depending on the work-
load requirements. Microarchitectures that are more fair will not do this natural batching 
and will require longer critical regions to perform well. Essentially, the programmer has 
to do the batching.
With ticket locks (and, to a lesser degree, sleeping locks), fairness is guaranteed by the 
lock. This means no natural batching occurs and the programmer may also need to 
increase lock region sizes manually for good performance.

1.4 LOCK SCALING ON FUTURE INTEL PROCESSORS
We expect processors coming after the Intel Xeon processor E5-2600 series to follow 
similar trends, as far as lock performance is concerned. Increased core count is likely to 
lead to small increases in the idle cache-to-cache transfer latencies, which will slightly 
increase the time it takes to move ownership of a lock address among cores on the 
package. This may serve to further highlight the importance of avoiding the non-linear 
scaling effects that can occur when a lock is highly contended, and encourage software 
to avoid very short critical section and re entry times. But, we do not expect any new 
scaling trends to develop with future processors, aside from those which are already 
evident in the Intel Xeon processor generations that are currently available.
The next generation of Intel processors will support lock elision using Intel® Transac-
tional Synchronization Extension (Intel® TSX). Intel TSX can improve lock scaling in 
many cases, in particular with coarse-grained locks, but may need additional tuning.
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1.5 RECOMMENDATIONS
As mentioned previously in this paper, the performance of a lock algorithm under 
contention depends on the actual software implementation as well as how the software's 
latency characteristics interact with underlying hardware latencies. 
Several metrics play a critical role in determining the scalability of a locking algorithm:

1. The time each thread spends in the critical section holding the lock

2. The time each thread waits after releasing the lock and before trying to re-acquire 
the lock 

3. The number of cores actively contending for the lock

4. The number of sockets in the system, over which those cores are distributed
When values for #1 and #2 are very low (on the order of less than a few hundred nano-
seconds), the behavior can be unpredictable because such low latencies are approaching 
the hardware's idle cache-to-cache transfer latencies. Even at a fixed thread count, algo-
rithms with low values for these metrics may not scale well across processor genera-
tions, and may even scale poorly with frequency across processors from the same 
processor generation.
That #3 and #4 are also a factor should be less surprising. As the number of threads 
polling the status of a lock address increases, the time it takes to process those polling 
requests will increase. Finally, the latency to transfer data across socket boundaries will 
always be an order of magnitude longer than the on-chip cache-to-cache transfer laten-
cies. Such cross-socket transfers, if they are not effectively minimized by software, will 
negatively impact the performance of any lock algorithm that depends on them.
There are a few techniques that can be adopted to improve lock scalability:

1. Increase the amount of work done while holding the lock. If the time that the lock is 
held is more than a few hundred nanoseconds, then the time to transfer the lock 
between different threads does not negatively impact the scalability of the lock 
algorithm. While good software practice may recommend fine-grained locks, the 
benefits of fine-grained locking are reduced if the lock is highly contended. As a 
result, there is a tension between fine-grained locking and achieving scalable lock 
performance. Batching locks and doing more work, per lock, will improve the 
scalability if high contention is anticipated.

2. Partition resources on a per-socket basis. Because it is more expensive to transfer 
locks across sockets than among cores on the same socket, the software should 
explore whether the resources controlled by the lock can be partitioned on a per-
socket basis, with dedicated locks for each partition. In some cases, it may even be 
valuable to further partition those resources across cores within the same socket as 
core counts increase.

1.6 SUMMARY
Micro-benchmarks with very tight loops of atomic operations on the same address can 
exhibit behavior, under heavy contention, that is highly sensitive to a hardware imple-
mentation's system latencies. It is not useful to measure the rate at which such a bench-
mark issues back-to-back atomics and then attempt to draw meaningful conclusions 
about lock scaling on real software from those measurements.
The two Intel Xeon processor generations discussed in this white paper provide a case in 
point. On the Intel Xeon processor X5600 series, under very brief lock re-entry times, it 
is possible for a core to do multiple back-to-back updates, while it has ownership of a 
lock, before losing that ownership to another core. This can occur because the time it 
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takes an Intel Xeon processor X5600 series to start the ownership transfer, from one 
core to the next, is long enough that multiple atomics can be issued by software before 
the hardware begins the transfer. These back-to-back updates, in the space of a single 
ownership transfer between cores, may be counted by the micro-benchmark as multiple 
successful ownership transfers. The Intel Xeon processor E5-2600 series, on the other 
hand, starts inter-core lock transfers more quickly, leaving less time for any one core to 
hang onto the lock and perform multiple sequential updates. When tight lock kernels are 
used as a metric, such subtle differences in hardware implementation may lead to 
misleading conclusions, when comparing the lock scaling of two different processors.
Unlike micro-benchmarks, real-life software should avoid such short re-entry and critical 
section times if consistent scaling across microarchitectures is desired. Specifically, the 
work done by real software, both while in the critical section and also between lock 
release and re-entry, should be of reasonably long duration. To avoid these anomalies, 
our recommendation is for this amount of work to be on the order of several hundred 
nanoseconds. Software should also consider the other techniques outlined in this paper 
(like lock batching and resource partitioning) for further improvements in lock scalability.
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 APPENDIX A
LOCKS

A.1 OVERVIEW
This appendix provides an overview of the various flavors of locks and how they interact 
with the operating system.

A.2 SPINLOCK
Spinlocks are one of the most common forms of locking. The following example shows 
one form of spinlock using an integer count for the lock. When the lock value is 1, the 
lock is free. The lock acquire atomically decrements the count. When the resulting value 
is zero, the lock is acquired and the critical section can execute. When it is negative, 
another thread is assumed to be holding the lock and the spinlock spins until the lock 
appears free and tries again. When the critical section finishes executing, the lock vari-
able is set back to one, to indicate that it is free. Similar spinlocks can be implemented 
in other ways (for example, using CMPXCHG or simple XCHG instead of a count); this is 
merely a representative example implementation.

The lock instruction can be either a LOCK XADD or a LOCK DEC with a test of the condi-
tion code. The __atomic_* built-ins with the memory model specifiers ensure that the 
compiler's optimizer does not reorder the memory accesses. (The atomic primitives can 
be replaced with others, depending on the compiler or with an inline assembler.) Another 
important detail is having the PAUSE instruction inside the spinlock. The _mm_pause 
intrinsic uses the PAUSE instruction to yield the CPU to another hyperthread and to save 
power. It also serves to slightly limit the rate of accesses on the processor interconnect. 
An important detail of the implementation is that it spins reading, not writing, the lock 
variable. From the CPU's point of view, getting a cache line for writing is more expensive 
than reading. To optimize performance and lower the impact on the CPU interconnect, it 

Figure A-1. Spinlock example using gcc 4.7+ atomic primitives

#include <xmmintrin.h>
static volatile int lock = 1; /* 1 means free */
lock:

while (__atomic_sub_fetch(&lock, 1, __ATOMIC_ACQUIRE) < 0) {
do

_mm_pause();
while (__atomic_load_n(&lock, __ATOMIC_ACQUIRE) != 1);

}

unlock:;
int free_val = 1; 
__atomic_store(&lock, &free_val, __ATOMIC_RELEASE);
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is best to limit the rate at which this is done. So, the locking code always waits until the 
lock appears to be free before trying to acquire it again.
Spinlocks can be implemented in other ways than shown in this example. However, using 
PAUSE and spinning on reading are important for any spinlock.

A.2.1  Interaction with the operating system
A classic spinlock is only as fair as the underlying microarchitecture. It makes no 
assumption about the order in which the critical sections will run. This has advantages 
when interacting with the OS scheduler. The OS scheduler chooses a particular order to 
run threads spinning on the lock, and whatever spinning thread gets scheduled has a 
chance to get the lock. However, when the thread that currently owns the lock is 
preempted, there may still be a slowdown.
This implies that with oversubscription (more threads running than available logical 
CPUs), the performance of spinlocks can depend heavily on the exact OS scheduler 
behavior, and may change drastically with operating system or VM updates.
Adding a yield system call into the spinlock is a common change. However, this can also 
cause problems with oversubscription and lower performance in some circumstances. 
Yield allows the OS to give up the time slice, which can cause starvation when another 
thread that is running consumes all spare CPU cycles. For general purpose spinlocks, 
yielding to the kernel should be avoided.
Some OSs may have specific system calls to block on locks that avoid the starvation 
problem with yield (for example, the futex system call on Linux*). Implementing such 
hybrid spinning/blocking locks is outside the scope of this documentation. However, 
when a hybrid lock is implemented, it is important not to violate the recommendations 
specified here.

A.3 TICKET LOCK
A ticket lock is a lock that enforces ordering and fairness. A simple ticket lock consists of 
two counters: the head and the tail. Each number represents a ticket. A locker takes a 
ticket by atomically incrementing the tail and saving the previous value (its ticket). This 
can be done with the XADD instruction. Then it spins until the head counter reaches the 
value of its ticket. To unlock, it increments the head counter by one (which need not be 
performed atomically because there can only be one thread unlocking at a time).
The ticket counters must be sized to accommodate the maximum number of threads 
that could be taking a lock in parallel. The head and tail can be combined into a single 
word, so that a single XADD instruction can atomically get both the head/tail values and 
increment the tail. In this case, the tail must be in the high part to avoid carry overflows 
corrupting the head.
One advantage of the ticket lock is that it will only ever write to the lock once, minimizing 
write traffic on the CPU interconnect.
The following shows an example of a simple global variant of a ticket lock. More sophis-
ticated variants support spinning on private memory to optimize access patterns. This 
simple variant has the advantage that it needs only a single atomic operation on an 
uncontended lock.
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A.3.1  Interaction with the operating system
The ticket lock enforces the order through its tickets. However, this can conflict with the 
operating system (or virtual machine) scheduler when the CPUs are oversubscribed 
(more threads running than logical CPUs available). In this case, the scheduler may 
choose to schedule a thread with a later ticket, but block a thread with an earlier ticket. 
Because the thread with a later ticket can never acquire the lock before the earlier one, 
this just wastes CPU time slices and causes delays and poor performance. This implies 
that with oversubscription ticket locks can rely heavily on the exact scheduler behavior 
and may change drastically with operating system or VM updates.
When oversubscription is possible, it is better to avoid ticket locks.

A.4 READ/WRITE LOCKS
A read/write lock allows multiple readers, but only a single writer, in the critical section. 
Typically, this is implemented by a single counter or a small number of counters all 

Figure A-2. Ticket lock example using gcc 4.7+ atomic primitives

#include <xmmintrin.h>
/* Lower 16 bits: head count, higher 16 bits: tail. Maximum 16k threads */
unsigned int ticket_lock = 0;
#define TAIL_SHIFT  16
#define HEAD_MASK   0xffff

lock:
unsigned tail, head;
tail = __atomic_fetch_add(&ticket_lock, 1 << TAIL_SHIFT, 
__ATOMIC_ACQUIRE);
head = tail & HEAD_MASK;
tail >>= TAIL_SHIFT; 
while (head != tail) {

        _mm_pause();
head = __atomic_load_n(&ticket_lock, __ATOMIC_ACQUIRE) & 

HEAD_MASK;
}

unlock:
/* Note: violates strict aliasing (use –fno-strict-aliasing with gcc) */
/* Increment head (lower 16bit) only. Assumes Little-Endian */
(*((unsigned short *)&ticket_lock))++;
/* Compiler barrier */
__atomic_thread_fence(__ATOMIC_RELEASE);
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located on the same cache line. A reader changes the counter atomically and checks the 
writer status. If there is no writer, it continues. However, if there is a writer, it spins until 
the writer exits. When many readers are executing in parallel and at a high frequency, 
this results in many transfers of the cache line between cores and may result in poor 
scaling.
In general, read/write locks should be used only when the lock inter-arrival time is 
reasonably long and also, the reader-critical section is reasonably long. The performance 
of read/write locks also depends heavily on the write ratio. Many simple implementations 
have starvation problems, with frequent writers potentially starving readers (live lock).
Simple read locks do not scale as well as one would expect, in theory, because the 
communication cost of the cache line that is modified by each reader limits scaling. This 
is especially visible for short critical regions with a short inter-arrival time. Contended 
read locks should be used only for relatively long critical regions or long lock inter-arrival 
times and when there are far more readers than writers. The performance of read locks 
typically goes down dramatically as the number of writers increases.
For read locks with frequent reading from many cores and low inter-arrival times, 
consider using big read locks instead.
The recommendations for spinlocks apply to read-write locks, too. PAUSE should be used 
in the loop and any spin loop should spin reading, and write only when it sees the lock 
value change.
Simple spinlock implementations are often implemented using a spinlock to protect the 
rwlock state, and using multiple counters protected by that lock for reads/writes. 
Switching to a single atomic count, directly manipulated by atomic operations without an 
auxiliary lock, can improve scalability by optimizing cache line transitions. One way to do 
that is to use the upper bits of the counter for writers and the lower bits for readers. This 
can be atomically modified and checked with XADD. Similar schemes can be imple-
mented with CMPXCHG.

A.4.1  Interaction with the operating system
The interaction of read/write locks with the operating system is the same as for classic 
spinlocks. Typically, read/write locks can also be implemented using operating system 
primitives to provide blocking read/write locks (for example, with futex on Linux*).

A.5 BIG READ LOCKS
If the number of readers is far higher than the number of writers, a reasonable alterna-
tive is a big read lock. Essentially, each thread gets its own read/write lock and it takes 
its own lock for reading. This minimizes communication overhead for the common reader 
case. A writer takes all the read/write locks for writing for all threads. This is a trade-off 
between reader and writer performance, favoring the readers at the cost of more expen-
sive writers. The lock cache line will then be shared in each CPU's cache and readers will 
execute with minimal lock latency.
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When it's not practical to give each thread its own lock and find all locks from writers, it's 
also possible to use a number of read/write locks in a table and use a hash mapping to 
map each thread to a specific lock in the table. This allows arbitrary trade-offs between 
reader and writer costs, by changing the lock table size.

A.5.1  Interaction with the operating system
The interaction of big read lock with the OS is the same as for the read/write locks.

A.6 SLEEPING LOCKS
Operating systems usually also provide blocking locking interfaces. Instead of spinning, 
these put the blocking task to sleep and wake it up using operating system wake-up 
mechanisms (monitor/mwait, inter-processor interrupts). The minimum cost of conten-
tion is higher with a sleeping lock because it requires a system call with a much longer 
code path. Often, this cost can be amortized for brief block times by using a hybrid lock 
that spins for some time before sleeping.
Typically, sleeping locks have more overhead per lock, but can behave better with over-
subscription. When a lock sleeps for a long time (such as when doing I/O), it may have 
less overhead than a spinning lock, as the kernel can often schedule other work onto the 
blocked CPUs.

Figure A-3. Partitioned big read lock pseudo code

struct {
    union {
      read_lock_t rwlock;
      char cache_line_pad[ROUNDUP(sizeof(read_lock_t), 64)];   
     /* Pad array element to avoid false sharing */
    } u;
} br_lock_table[MAX_THREADS];

Reader:
read_lock(&br_lock_table[my_thread_id()].u.rwlock);  /* Lock */
… read critical section …
read_unlock(&br_lock_table[my_thread_id()].u.rwlock); ./* Unlock */

Writer:
For_each_thread (thr):  /* Write-Lock */

    write_lock(&br_lock_table[thr].u.rwlock);
… writer critical section …
For_each_thread (thr):  /* Write-Unlock */

    write_unlock(&br_lock_table[thr].u.rwlock);



Locks

20 Reference Number: 328878-001, Revision: 1.01

On Linux, a user program interface for sleeping locks can either use the futex system call 
or the pthread lock functions. An overview of basic (not hybrid) futexes is in http://
www.akkadia.org/drepper/futex.pdf.
The implementation of sleeping or hybrid spinning-sleeping locks is complex and out of 
scope of this paper. These locks can be affected by hardware properties, such as idle (C-
state) latencies and operating system behavior. The optimal spin time varies with 
different system configurations. They typically depend less on the actual scheduler 
behavior than locks implemented by spinning, so their behavior can be more stable over 
operating system revisions. Generally, sleeping locks are more difficult to analyze than 
simpler locks because they have more states.

http://www.akkadia.org/drepper/futex.pdf
http://www.akkadia.org/drepper/futex.pdf
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