
Reference Number: 328878-001, Revision: 1.01

Lock Scaling Analysis on
Intel® Xeon® Processors
April 2013

2 Reference Number: 328878-001, Revision: 1.01

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU
SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT
Technology-enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software
used. For more information including details on which processors support HT Technology, visit
http://www.intel.com/info/hyperthreading.
Intel® Turbo Boost Technology requires a system with Intel® Turbo Boost Technology. Intel Turbo Boost Technology and Intel Turbo
Boost Technology 2.0 are only available on select Intel® processors. Consult your system manufacturer. Performance varies
depending on hardware, software, and system configuration. For more information, visit http://www.intel.com/go/turbo
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm
Intel, the Intel logo and Xeon trademarks of Intel Corporation in the U.S. and/or other countries.
Copyright © 2013 Intel Corporation. All right reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/info/hyperthreading
http://www.intel.com/go/turbo
http://www.intel.com/design/literature.htm

Reference Number: 328878-001, Revision: 1.01 3

Contents

1 Lock Scaling Analysis on Intel® Xeon® Processors..5
1.1 Introduction ...5
1.2 Lock scaling analysis..5

1.2.1 Factors to consider in lock scaling...6
1.2.1.1 Importance of software latency assumptions6
1.2.1.2 Importance of thread count..7

1.2.2 Lock scaling results ..7
1.2.2.1 Lock scaling with >200ns critical section times................................8
1.2.2.2 Lock scaling with <200ns critical section times................................9
1.2.2.3 Applicability of the analysis .. 10

1.3 Lock coarsening .. 10
1.3.1 Lock granularity ... 10
1.3.2 Fairness and unfairness... 12

1.4 Lock scaling on future Intel processors ... 12
1.5 Recommendations ... 13
1.6 Summary... 13

A Locks... 15
A.1 Overview ... 15
A.2 Spinlock... 15

A.2.1 Interaction with the operating system ... 16
A.3 Ticket lock.. 16

A.3.1 Interaction with the operating system ... 17
A.4 Read/write locks ... 17

A.4.1 Interaction with the operating system ... 18
A.5 Big read locks ... 18

A.5.1 Interaction with the operating system ... 19
A.6 Sleeping locks... 19

Figures

1-1 Single-socket contended spinlock performance (the Intel® Xeon® processor E5-2600
series over the Intel® Xeon® processor X5600 series) at the same-frequency (2.7GHz)
and same thread count (6 threads participating) for critical section times from 200ns to
500ns ..8

1-2 Single-socket contended spinlock performance (the Intel® Xeon® processor E5-2600
series over the Intel® Xeon® processor X5600 series) at the same-frequency (2.7GHz)
and same thread count (6 threads participating) for critical section times from 10ns to
100ns ..9

1-3 Comparing the effects of a contended longer lock region with a short lock region 11
1-4 Lock region length vs. work .. 11
A-1 Spinlock example using gcc 4.7+ atomic primitives.. 15
A-2 Ticket lock example using gcc 4.7+ atomic primitives... 17
A-3 Partitioned big read lock pseudo code .. 19

Tables

4 Reference Number: 328878-001, Revision: 1.01

1-1 Configurations.. 5

Reference Number: 328878-001, Revision: 1.01 5

Revision History

§

Document
Number

Revision
Number Description Date

328878-001 1.01 • Initial Release April 2013

6 Reference Number: 328878-001, Revision: 1.01

Reference Number: 328878-001, Revision: 1.01 5

Lock Scaling Analysis on Intel® Xeon® Processors

CHAPTER 1
LOCK SCALING ANALYSIS ON INTEL® XEON®

PROCESSORS

1.1 INTRODUCTION
This white paper discusses the performance of locking algorithms and how they scale
under contention on Intel® Xeon® processors. We compare the performance of
contended locks on the Intel® Xeon® processor X5600 series and the Intel® Xeon®
processor E5-2600 series under different conditions, and conclude with a list of recom-
mendations for better lock scalability.

1.2 LOCK SCALING ANALYSIS
Performance of a lock algorithm is typically measured by its throughput, that is, the
number of locks the algorithm is able to complete successfully in a fixed window of
time1. The latency is also a useful metric, but because the cumulative time it takes to
complete lock processing is proportional to the inverse of the algorithm's throughput, we
will focus on throughput as our metric. The other important metric for performance is
how the throughput of the algorithm varies with the number of cores participating in the
algorithm. We will use the term lock scaling to refer to the algorithm's sensitivity to core
count.

Table 1-1. Configurations1

Notes:
1.For more information go to http://www.intel.com/performance

System 1 (Codenamed Westmere) System 2 (Codenamed Romley)

Processor Intel® Xeon® Processor X5680, 12MB
L3 cache, 3.3GHz, 6.4GT/s Intel®
QuickPath Interconnect, 6 cores per
processor

Intel® Xeon® Processor E5-2680,
20MB cache, 2.7Ghz, 8.0GT/s Intel
QuickPath Interconnect, 8 cores per
processor

Platform 12 cores enabled running at 2.66GHz
with Intel® Turbo Boost Technology
disabled, frequency scaling disabled,
Intel® Hyper-Threading Technology
disabled, 18GB of DDR3 1067Mhz 1GB
DIMMs

12 out of 16 cores enabled running at
2.7GHz with Intel® Turbo Boost
Technology disabled, frequency scaling
disabled, Intel® Hyper-Threading
Technology disabled, 32GB of RAM in
16 2GB DIMMs, 1333Mhz Samsung
M393B5273CH0-YH9

Software Red Hat* Enterprise Linux* 6.0 (no
updates) with updated Linux* 3.6.0
kernel

Fedora* FC16 updated with Linux
3.6.0 kernel

1. Throughput here refers to that of the overall algorithm and does not distinguish the rate of each individual
thread's lock acquire throughput. This has subtle but key implications for how this throughput number is
interpreted, especially when dealing with micro-benchmark measurements.

http://www.intel.com/performance

Lock Scaling Analysis on Intel® Xeon® Processors

6 Reference Number: 328878-001, Revision: 1.01

Lock algorithms have been an active area of work over the past decades. A few of the
key algorithms used in software today are summarized in Appendix A. A full analysis of
the performance and scaling characteristics of each is beyond the scope of this paper. In
this white paper, we focus on locking algorithms that have a “polling” component in their
lock acquire phase. Such algorithms are most commonly used in software today. An
example is a spinlock, where the algorithm repeatedly tests to see if the lock is available
prior to its attempt to acquire the lock. We use the spinlock algorithm's scaling as a
proxy for algorithms that have a polling phase (typically referred to as the “test” phase
of a lock algorithm), where threads periodically poll a shared address in memory to
determine the status of a resource1.
When a lock that has such a polling phase is heavily contended, the factor which most
impacts scaling is the time it takes to sift through the polling threads when the lock
address is being written. This is the primary component in the lock latency that degrades
as the number of cores simultaneously polling the address increases. The poor scaling
for an algorithm that polls a shared address in this way is an expected result of the
polling.
In our lock scaling proxy, the spinlock, each thread polls the address to determine when
the lock is free. Another traditional lock example, the ticket lock, has each thread poll the
address to determine when its turn to acquire the lock has arrived. Though there are
definite performance differences between the two, the general degradation in the time
spent polling as core count increases is common to both. For this reason, we believe that
the analysis that follows is generally applicable to any algorithm that includes a compo-
nent where multiple threads are polling a shared address.
One additional point that we aim to convey is that understanding how a given algorithm
behaves on a given system microarchitecture is not as simple as specifying the general
type of lock algorithm and then measuring its behavior. It also depends on how the algo-
rithm is implemented in software. In particular, it depends on how the software's latency
choices interact with underlying hardware latencies.

1.2.1 Factors to consider in lock scaling

1.2.1.1 Importance of software latency assumptions
In the analysis that follows, we will show results for a spread of latencies for two of the
key latencies relevant to most lock algorithms:

1. The time that each thread spends in the critical section (critical section time). This
latency represents how much work is done by a thread each time it acquires the lock.

2. The time each thread waits, after leaving the critical section, before attempting to
enter the critical section again (re-entry time). This latency represents how much
work, that is not relevant to the critical shared resources, is being done by each
thread, while it does not own the critical section resource.

These two latencies are determined by how the software has chosen to partition and
isolate its shared resources and can vary wildly in real applications, even when those
applications are using the same general type of algorithm.
A micro-benchmark that aims to study lock performance cannot give a reasonable
account of how a given lock algorithm will behave on real software, if the study of the
micro-benchmark does not include a study of the sensitivity to these two work intervals
and does not factor in whether the spread of latencies it has evaluated are representa-
tive of the application of interest.

1. This is in contrast to other types of algorithms that do not involve polling, such as sleeping locks.

Reference Number: 328878-001, Revision: 1.01 7

Lock Scaling Analysis on Intel® Xeon® Processors

Expected behavior for a given algorithm is usually predictable at relatively long latencies
for the units of time represented by these work intervals, but the same is not true when
the work intervals are very short. It gets increasingly difficult to predict behavior as the
software latencies are decreased, particularly when the unit of time represented by
these work intervals begins to approach the hardware's underlying cache-to-cache
transfer latencies. If a lock becomes heavily contended with such short intervals, and the
software tries to force lock transfers to occur at a rate that is faster than the rate at
which the hardware can perform a single cache-to-cache transfer, then behavior
becomes non-deterministic.

1.2.1.2 Importance of thread count
When evaluating lock performance across platforms, it is important to bear in mind that
there is a general trend of increasing the number of cores in the socket with each gener-
ation. Contention between threads will go up as the number of threads that can simulta-
neously compete is increased. When evaluated for expected latency, most lock
algorithms, even those not explicitly covered here, will reveal some period in the overall
time we expect for the algorithm to achieve an ownership transfer, where forward prog-
ress to the next lock owner of the lock address is impeded by the hardware's need to
arbitrate between the competing threads. That arbitration is going to take longer, as
threads running on the additional cores are added. If software persists in operating in
modes where all the threads that hardware makes available are simultaneously
attempting to use the same hardware resources, the observed scaling will degrade. This
is inevitable. It is going to become increasingly important, going forward, that software
account for this in its algorithms.

1.2.2 Lock scaling results
We now analyze the scaling performance of our proxy spinlock algorithm. We focus
primarily on the difference between the Intel Xeon processor X5600 series and the Intel
Xeon processor E5-2600 series. For a controlled experiment, we keep the same thread
count (6 hardware threads per socket) across the two systems and use the same clock
frequency for the processors on the two systems. In a normal platform-to-platform
comparison, the processors will not be operating at the same frequency, and the idle
latency differences observed will be different.
The relative throughput of the lock algorithm on the Intel Xeon processor E5-2600 series
over the Intel Xeon processor X5600 series is plotted on the y-axis in the graphs shown.
The x-axis shows the critical section time on a logarithmic scale, varying from 10ns to
500ns. Each curve corresponds to a different re-entry time (varying from 10 ns to 500
ns).

Lock Scaling Analysis on Intel® Xeon® Processors

8 Reference Number: 328878-001, Revision: 1.01

1.2.2.1 Lock scaling with >200ns critical section times

The graph shows two distinct regions. When critical section times exceed 300 ns (right
side of the graph), the Intel Xeon processor E5-2600 series transfers spinlock ownership
at a slower rate (in general about 8-12% slower) than the Intel Xeon processor X5600
series for all re-entry times. The variation is sharper (up to 18%) when the critical
section time falls in the 200 ns to 300 ns interval. Evidence of volatility in the behavior
on both processors being compared is also beginning to show itself at the lower end of
the critical section time range, as some of the curves begin to diverge from the general
trend.
At higher critical section and re-entry times, the locks are lightly contended. In this
scenario, the performance difference observed is due to the differences in the idle cache-
to-cache transfer latencies. The Intel Xeon processor E5-2600 series implements a ring
architecture to support more cores, which results in slightly longer idle cache-to-cache
transfer latencies (by about 6 ns at 2.7GHz frequency when both cores are in the same
socket). The 8-12% delta, on the right end of the curve, tracks roughly what one would
expect, based on those idle latency differences.

Figure 1-1. Single-socket contended spinlock performance (the Intel® Xeon® processor
E5-2600 series over the Intel® Xeon® processor X5600 series) at the same-
frequency (2.7GHz) and same thread count (6 threads participating) for
critical section times from 200ns to 500ns

Reference Number: 328878-001, Revision: 1.01 9

Lock Scaling Analysis on Intel® Xeon® Processors

1.2.2.2 Lock scaling with <200ns critical section times

We now analyze spinlock scaling when the critical section time is less than 200 ns.
As we can see in the graph, there is no clear trend in locking algorithm performance at
lower critical section times, though the results converge better in the 50-100ns range.
Several factors contribute to the low performance numbers being reported by the micro-
benchmark test, and we focus on two key factors in this discussion.
The first factor is due to changes in how the Intel Xeon processor E5-2600 series
processes snoop invalidations compared to the Intel Xeon processor x5600 series. On
Intel Xeon processor E5-2600 series, the snoop invalidations arrive faster than on the
Intel Xeon processor X5600 series. This occurs due to enhancements in the Intel Xeon
processor E5-2600 series microarchitecture, where the inter-core ownership transfers
can occur sooner than on the Intel Xeon processor X5600 series.
The impact of this change shows up in the extremely contended case where a thread on
an Intel Xeon processor X5600 series may re-acquire the lock it just released, and
perform multiple updates before any other thread gets an opportunity to successfully
acquire the lock. In contrast, on an Intel Xeon processor ES-2600 series-based system,
because of the faster snoop invalidations, other threads get a better chance of acquiring
the lock before the releasing thread re-acquires the lock. This causes a perceived reduc-
tion in throughput when the Intel Xeon processor ES 2600 series is compared to the Intel
Xeon processor X5600 series. However, this is misleading because benchmarking a
thread's ability to quickly pass lock ownership back to itself in the face of contention with
other threads is not likely to be representative of realistic application behavior. This is
particularly true because in general the performance of workloads that share data is
improved when cache-to-cache transfer latency is reduced.
The second factor is due to other micro-architecturally unique features on both the Intel
Xeon processor E5-2600 series and the Intel Xeon processor X5600 series that cause
non-deterministic performance behavior when these intervals are very low. This non-
determinism shows itself, in the above graph, where the lines that represent different re-
entry times cross each other as critical section time decreases.

Figure 1-2. Single-socket contended spinlock performance (the Intel® Xeon® processor
E5-2600 series over the Intel® Xeon® processor X5600 series) at the same-
frequency (2.7GHz) and same thread count (6 threads participating) for
critical section times from 10ns to 100ns

Lock Scaling Analysis on Intel® Xeon® Processors

10 Reference Number: 328878-001, Revision: 1.01

1.2.2.3 Applicability of the analysis
In general, this analysis should apply to any locking algorithm that involves multiple
threads polling a shared address waiting for a particular value to be written to that
address. When such a lock algorithm takes the work interval close to zero, one can
expect performance degradation and unpredictability.
When predictable performance is desired, such a lock algorithm needs reasonably long
critical section and re-entry times. In a software implementation that takes either of
those down to very small values, results become unpredictable and a tightly contended
lock is guaranteed not to scale properly.1

1.3 LOCK COARSENING

1.3.1 Lock granularity
Traditionally, lock optimization has tried to reduce the length of lock regions to minimize
lock contention. This is done to minimize the blocking time for other threads waiting on
the lock. For optimized code that already has short lock regions, the time to transfer the
cache line of the lock between threads, when unlocking and relocking, can start to domi-
nate when there is even moderate contention on any of the locks. This is more visible as
the system gets larger.
The following diagram compares the effects of a contended longer lock region with a
short lock region. With the short lock region, more time is spent communicating, that is,
transferring the lock cache line between cores. The longer lock region has potentially
longer block times, but minimizes the communication overhead of transferring the lock
too frequently. This is a simple case with only two threads. With more cores in each
socket, the queueing delays of transferring will increase. Similarly, on larger systems
that have more sockets, the communication delays will also increase. Having too many
small lock regions increases communication overhead, while having too many large lock
regions increases blocking time.

1. An additional point is that when these software latencies are too short, results may sometimes show what
appears to be stellar "average" scaling by allowing a few threads to monopolize the resource, while starv-
ing out others. The latter can be observed, for example, if one uses, as one's metric for lock performance, a
micro-benchmark that has every thread cycle through atomic operations to the same address as fast as pos-
sible with no regard for what value is being written or read, and with no regard for critical section time or
re-entry time. Such a micro-benchmark is not very informative.

Reference Number: 328878-001, Revision: 1.01 11

Lock Scaling Analysis on Intel® Xeon® Processors

Consider a program that does a variable number of constant-size operations inside the
lock. In a test program, we do hashes. Multiple threads lock each other out. Each thread
can do work only when the other threads are waiting on the lock. Now, we vary the
number of hashes inside the lock region and measure the total work done. For this test,
increasing the length of the lock region improves the total amount of work. We get the
best total result for a long lock region.

There is clearly a trade-off. Making the lock regions too large will increase blocked time
again. But making them too small increases the communication overhead too much.
Batching locks is a good idea. The best region size depends on the workload, but it is
neither very small nor extremely large. We need to somehow find the critical section size
that is “just right”.
Programs that are already highly optimized for scaling with fine grained locking often
have very short lock regions. This can give good performance, but when there is a situ-

Figure 1-3. Comparing the effects of a contended longer lock region with a short lock
region

 Lock Region

 Lock Region

Lock Region

 Lock Region

LR

LR

LR

LR

LR

LR

Figure 1-4. Lock region length vs. work

Lock Scaling Analysis on Intel® Xeon® Processors

12 Reference Number: 328878-001, Revision: 1.01

ation where the lock contention increases on one of these very short lock regions, the
performance may suffer dramatically. One example of this would be a hash table with
per hash bucket locking and a short critical region accessing the data in the hash table
under the lock. Normally, because the hash values are well distributed, there is no
contention on the bucket lock and the system will scale well. However, when there is a
workload that has hash collisions on hot entries, the lock contention may go up dramat-
ically on the bucket with the collision and perform poorly because the critical region is
small. In this case, fine-grained locking can be a liability.
A common situation where this can happen is packet processing when each packet
received is processed individually and takes its own read locks to look up the global
state. Batching the locks and processing multiple packets (or larger packets, for
example, as generated by Large Receive Offloading (LRO) of the NIC) per lock acquisi-
tion, can improve scaling by increasing the size of the critical region and lowering the
number of local acquisitions. This is called “batching the lock” or “lock coarsening”.
Similar techniques can be applied to other queue processing code patterns.

1.3.2 Fairness and unfairness
As shown earlier, though a spinlock algorithm cannot ensure fairness, the amount of
unfairness observed by a spinlock can vary with the microarchitecture. A microarchitec-
ture that is less fair will give natural batching to lock regions that are too short, because
unfair lock acquisition will tend to reacquire the lock on the same thread multiple times
in a row. This can improve performance with lock regions that are too short by mini-
mizing communication costs (as shown above), but at the cost of fairness. As long as the
unfairness does not lead to starvation, this may be acceptable, depending on the work-
load requirements. Microarchitectures that are more fair will not do this natural batching
and will require longer critical regions to perform well. Essentially, the programmer has
to do the batching.
With ticket locks (and, to a lesser degree, sleeping locks), fairness is guaranteed by the
lock. This means no natural batching occurs and the programmer may also need to
increase lock region sizes manually for good performance.

1.4 LOCK SCALING ON FUTURE INTEL PROCESSORS
We expect processors coming after the Intel Xeon processor E5-2600 series to follow
similar trends, as far as lock performance is concerned. Increased core count is likely to
lead to small increases in the idle cache-to-cache transfer latencies, which will slightly
increase the time it takes to move ownership of a lock address among cores on the
package. This may serve to further highlight the importance of avoiding the non-linear
scaling effects that can occur when a lock is highly contended, and encourage software
to avoid very short critical section and re entry times. But, we do not expect any new
scaling trends to develop with future processors, aside from those which are already
evident in the Intel Xeon processor generations that are currently available.
The next generation of Intel processors will support lock elision using Intel® Transac-
tional Synchronization Extension (Intel® TSX). Intel TSX can improve lock scaling in
many cases, in particular with coarse-grained locks, but may need additional tuning.

Reference Number: 328878-001, Revision: 1.01 13

Lock Scaling Analysis on Intel® Xeon® Processors

1.5 RECOMMENDATIONS
As mentioned previously in this paper, the performance of a lock algorithm under
contention depends on the actual software implementation as well as how the software's
latency characteristics interact with underlying hardware latencies.
Several metrics play a critical role in determining the scalability of a locking algorithm:

1. The time each thread spends in the critical section holding the lock

2. The time each thread waits after releasing the lock and before trying to re-acquire
the lock

3. The number of cores actively contending for the lock

4. The number of sockets in the system, over which those cores are distributed
When values for #1 and #2 are very low (on the order of less than a few hundred nano-
seconds), the behavior can be unpredictable because such low latencies are approaching
the hardware's idle cache-to-cache transfer latencies. Even at a fixed thread count, algo-
rithms with low values for these metrics may not scale well across processor genera-
tions, and may even scale poorly with frequency across processors from the same
processor generation.
That #3 and #4 are also a factor should be less surprising. As the number of threads
polling the status of a lock address increases, the time it takes to process those polling
requests will increase. Finally, the latency to transfer data across socket boundaries will
always be an order of magnitude longer than the on-chip cache-to-cache transfer laten-
cies. Such cross-socket transfers, if they are not effectively minimized by software, will
negatively impact the performance of any lock algorithm that depends on them.
There are a few techniques that can be adopted to improve lock scalability:

1. Increase the amount of work done while holding the lock. If the time that the lock is
held is more than a few hundred nanoseconds, then the time to transfer the lock
between different threads does not negatively impact the scalability of the lock
algorithm. While good software practice may recommend fine-grained locks, the
benefits of fine-grained locking are reduced if the lock is highly contended. As a
result, there is a tension between fine-grained locking and achieving scalable lock
performance. Batching locks and doing more work, per lock, will improve the
scalability if high contention is anticipated.

2. Partition resources on a per-socket basis. Because it is more expensive to transfer
locks across sockets than among cores on the same socket, the software should
explore whether the resources controlled by the lock can be partitioned on a per-
socket basis, with dedicated locks for each partition. In some cases, it may even be
valuable to further partition those resources across cores within the same socket as
core counts increase.

1.6 SUMMARY
Micro-benchmarks with very tight loops of atomic operations on the same address can
exhibit behavior, under heavy contention, that is highly sensitive to a hardware imple-
mentation's system latencies. It is not useful to measure the rate at which such a bench-
mark issues back-to-back atomics and then attempt to draw meaningful conclusions
about lock scaling on real software from those measurements.
The two Intel Xeon processor generations discussed in this white paper provide a case in
point. On the Intel Xeon processor X5600 series, under very brief lock re-entry times, it
is possible for a core to do multiple back-to-back updates, while it has ownership of a
lock, before losing that ownership to another core. This can occur because the time it

Lock Scaling Analysis on Intel® Xeon® Processors

14 Reference Number: 328878-001, Revision: 1.01

takes an Intel Xeon processor X5600 series to start the ownership transfer, from one
core to the next, is long enough that multiple atomics can be issued by software before
the hardware begins the transfer. These back-to-back updates, in the space of a single
ownership transfer between cores, may be counted by the micro-benchmark as multiple
successful ownership transfers. The Intel Xeon processor E5-2600 series, on the other
hand, starts inter-core lock transfers more quickly, leaving less time for any one core to
hang onto the lock and perform multiple sequential updates. When tight lock kernels are
used as a metric, such subtle differences in hardware implementation may lead to
misleading conclusions, when comparing the lock scaling of two different processors.
Unlike micro-benchmarks, real-life software should avoid such short re-entry and critical
section times if consistent scaling across microarchitectures is desired. Specifically, the
work done by real software, both while in the critical section and also between lock
release and re-entry, should be of reasonably long duration. To avoid these anomalies,
our recommendation is for this amount of work to be on the order of several hundred
nanoseconds. Software should also consider the other techniques outlined in this paper
(like lock batching and resource partitioning) for further improvements in lock scalability.

Reference Number: 328878-001, Revision: 1.01 15

Locks

 APPENDIX A
LOCKS

A.1 OVERVIEW
This appendix provides an overview of the various flavors of locks and how they interact
with the operating system.

A.2 SPINLOCK
Spinlocks are one of the most common forms of locking. The following example shows
one form of spinlock using an integer count for the lock. When the lock value is 1, the
lock is free. The lock acquire atomically decrements the count. When the resulting value
is zero, the lock is acquired and the critical section can execute. When it is negative,
another thread is assumed to be holding the lock and the spinlock spins until the lock
appears free and tries again. When the critical section finishes executing, the lock vari-
able is set back to one, to indicate that it is free. Similar spinlocks can be implemented
in other ways (for example, using CMPXCHG or simple XCHG instead of a count); this is
merely a representative example implementation.

The lock instruction can be either a LOCK XADD or a LOCK DEC with a test of the condi-
tion code. The __atomic_* built-ins with the memory model specifiers ensure that the
compiler's optimizer does not reorder the memory accesses. (The atomic primitives can
be replaced with others, depending on the compiler or with an inline assembler.) Another
important detail is having the PAUSE instruction inside the spinlock. The _mm_pause
intrinsic uses the PAUSE instruction to yield the CPU to another hyperthread and to save
power. It also serves to slightly limit the rate of accesses on the processor interconnect.
An important detail of the implementation is that it spins reading, not writing, the lock
variable. From the CPU's point of view, getting a cache line for writing is more expensive
than reading. To optimize performance and lower the impact on the CPU interconnect, it

Figure A-1. Spinlock example using gcc 4.7+ atomic primitives

#include <xmmintrin.h>
static volatile int lock = 1; /* 1 means free */
lock:

while (__atomic_sub_fetch(&lock, 1, __ATOMIC_ACQUIRE) < 0) {
do

_mm_pause();
while (__atomic_load_n(&lock, __ATOMIC_ACQUIRE) != 1);

}

unlock:;
int free_val = 1;
__atomic_store(&lock, &free_val, __ATOMIC_RELEASE);

Locks

16 Reference Number: 328878-001, Revision: 1.01

is best to limit the rate at which this is done. So, the locking code always waits until the
lock appears to be free before trying to acquire it again.
Spinlocks can be implemented in other ways than shown in this example. However, using
PAUSE and spinning on reading are important for any spinlock.

A.2.1 Interaction with the operating system
A classic spinlock is only as fair as the underlying microarchitecture. It makes no
assumption about the order in which the critical sections will run. This has advantages
when interacting with the OS scheduler. The OS scheduler chooses a particular order to
run threads spinning on the lock, and whatever spinning thread gets scheduled has a
chance to get the lock. However, when the thread that currently owns the lock is
preempted, there may still be a slowdown.
This implies that with oversubscription (more threads running than available logical
CPUs), the performance of spinlocks can depend heavily on the exact OS scheduler
behavior, and may change drastically with operating system or VM updates.
Adding a yield system call into the spinlock is a common change. However, this can also
cause problems with oversubscription and lower performance in some circumstances.
Yield allows the OS to give up the time slice, which can cause starvation when another
thread that is running consumes all spare CPU cycles. For general purpose spinlocks,
yielding to the kernel should be avoided.
Some OSs may have specific system calls to block on locks that avoid the starvation
problem with yield (for example, the futex system call on Linux*). Implementing such
hybrid spinning/blocking locks is outside the scope of this documentation. However,
when a hybrid lock is implemented, it is important not to violate the recommendations
specified here.

A.3 TICKET LOCK
A ticket lock is a lock that enforces ordering and fairness. A simple ticket lock consists of
two counters: the head and the tail. Each number represents a ticket. A locker takes a
ticket by atomically incrementing the tail and saving the previous value (its ticket). This
can be done with the XADD instruction. Then it spins until the head counter reaches the
value of its ticket. To unlock, it increments the head counter by one (which need not be
performed atomically because there can only be one thread unlocking at a time).
The ticket counters must be sized to accommodate the maximum number of threads
that could be taking a lock in parallel. The head and tail can be combined into a single
word, so that a single XADD instruction can atomically get both the head/tail values and
increment the tail. In this case, the tail must be in the high part to avoid carry overflows
corrupting the head.
One advantage of the ticket lock is that it will only ever write to the lock once, minimizing
write traffic on the CPU interconnect.
The following shows an example of a simple global variant of a ticket lock. More sophis-
ticated variants support spinning on private memory to optimize access patterns. This
simple variant has the advantage that it needs only a single atomic operation on an
uncontended lock.

Reference Number: 328878-001, Revision: 1.01 17

Locks

A.3.1 Interaction with the operating system
The ticket lock enforces the order through its tickets. However, this can conflict with the
operating system (or virtual machine) scheduler when the CPUs are oversubscribed
(more threads running than logical CPUs available). In this case, the scheduler may
choose to schedule a thread with a later ticket, but block a thread with an earlier ticket.
Because the thread with a later ticket can never acquire the lock before the earlier one,
this just wastes CPU time slices and causes delays and poor performance. This implies
that with oversubscription ticket locks can rely heavily on the exact scheduler behavior
and may change drastically with operating system or VM updates.
When oversubscription is possible, it is better to avoid ticket locks.

A.4 READ/WRITE LOCKS
A read/write lock allows multiple readers, but only a single writer, in the critical section.
Typically, this is implemented by a single counter or a small number of counters all

Figure A-2. Ticket lock example using gcc 4.7+ atomic primitives

#include <xmmintrin.h>
/* Lower 16 bits: head count, higher 16 bits: tail. Maximum 16k threads */
unsigned int ticket_lock = 0;
#define TAIL_SHIFT 16
#define HEAD_MASK 0xffff

lock:
unsigned tail, head;
tail = __atomic_fetch_add(&ticket_lock, 1 << TAIL_SHIFT,
__ATOMIC_ACQUIRE);
head = tail & HEAD_MASK;
tail >>= TAIL_SHIFT;
while (head != tail) {

 _mm_pause();
head = __atomic_load_n(&ticket_lock, __ATOMIC_ACQUIRE) &

HEAD_MASK;
}

unlock:
/* Note: violates strict aliasing (use –fno-strict-aliasing with gcc) */
/* Increment head (lower 16bit) only. Assumes Little-Endian */
(*((unsigned short *)&ticket_lock))++;
/* Compiler barrier */
__atomic_thread_fence(__ATOMIC_RELEASE);

Locks

18 Reference Number: 328878-001, Revision: 1.01

located on the same cache line. A reader changes the counter atomically and checks the
writer status. If there is no writer, it continues. However, if there is a writer, it spins until
the writer exits. When many readers are executing in parallel and at a high frequency,
this results in many transfers of the cache line between cores and may result in poor
scaling.
In general, read/write locks should be used only when the lock inter-arrival time is
reasonably long and also, the reader-critical section is reasonably long. The performance
of read/write locks also depends heavily on the write ratio. Many simple implementations
have starvation problems, with frequent writers potentially starving readers (live lock).
Simple read locks do not scale as well as one would expect, in theory, because the
communication cost of the cache line that is modified by each reader limits scaling. This
is especially visible for short critical regions with a short inter-arrival time. Contended
read locks should be used only for relatively long critical regions or long lock inter-arrival
times and when there are far more readers than writers. The performance of read locks
typically goes down dramatically as the number of writers increases.
For read locks with frequent reading from many cores and low inter-arrival times,
consider using big read locks instead.
The recommendations for spinlocks apply to read-write locks, too. PAUSE should be used
in the loop and any spin loop should spin reading, and write only when it sees the lock
value change.
Simple spinlock implementations are often implemented using a spinlock to protect the
rwlock state, and using multiple counters protected by that lock for reads/writes.
Switching to a single atomic count, directly manipulated by atomic operations without an
auxiliary lock, can improve scalability by optimizing cache line transitions. One way to do
that is to use the upper bits of the counter for writers and the lower bits for readers. This
can be atomically modified and checked with XADD. Similar schemes can be imple-
mented with CMPXCHG.

A.4.1 Interaction with the operating system
The interaction of read/write locks with the operating system is the same as for classic
spinlocks. Typically, read/write locks can also be implemented using operating system
primitives to provide blocking read/write locks (for example, with futex on Linux*).

A.5 BIG READ LOCKS
If the number of readers is far higher than the number of writers, a reasonable alterna-
tive is a big read lock. Essentially, each thread gets its own read/write lock and it takes
its own lock for reading. This minimizes communication overhead for the common reader
case. A writer takes all the read/write locks for writing for all threads. This is a trade-off
between reader and writer performance, favoring the readers at the cost of more expen-
sive writers. The lock cache line will then be shared in each CPU's cache and readers will
execute with minimal lock latency.

Reference Number: 328878-001, Revision: 1.01 19

Locks

When it's not practical to give each thread its own lock and find all locks from writers, it's
also possible to use a number of read/write locks in a table and use a hash mapping to
map each thread to a specific lock in the table. This allows arbitrary trade-offs between
reader and writer costs, by changing the lock table size.

A.5.1 Interaction with the operating system
The interaction of big read lock with the OS is the same as for the read/write locks.

A.6 SLEEPING LOCKS
Operating systems usually also provide blocking locking interfaces. Instead of spinning,
these put the blocking task to sleep and wake it up using operating system wake-up
mechanisms (monitor/mwait, inter-processor interrupts). The minimum cost of conten-
tion is higher with a sleeping lock because it requires a system call with a much longer
code path. Often, this cost can be amortized for brief block times by using a hybrid lock
that spins for some time before sleeping.
Typically, sleeping locks have more overhead per lock, but can behave better with over-
subscription. When a lock sleeps for a long time (such as when doing I/O), it may have
less overhead than a spinning lock, as the kernel can often schedule other work onto the
blocked CPUs.

Figure A-3. Partitioned big read lock pseudo code

struct {
 union {
 read_lock_t rwlock;
 char cache_line_pad[ROUNDUP(sizeof(read_lock_t), 64)];
 /* Pad array element to avoid false sharing */
 } u;
} br_lock_table[MAX_THREADS];

Reader:
read_lock(&br_lock_table[my_thread_id()].u.rwlock); /* Lock */
… read critical section …
read_unlock(&br_lock_table[my_thread_id()].u.rwlock); ./* Unlock */

Writer:
For_each_thread (thr): /* Write-Lock */

 write_lock(&br_lock_table[thr].u.rwlock);
… writer critical section …
For_each_thread (thr): /* Write-Unlock */

 write_unlock(&br_lock_table[thr].u.rwlock);

Locks

20 Reference Number: 328878-001, Revision: 1.01

On Linux, a user program interface for sleeping locks can either use the futex system call
or the pthread lock functions. An overview of basic (not hybrid) futexes is in http://
www.akkadia.org/drepper/futex.pdf.
The implementation of sleeping or hybrid spinning-sleeping locks is complex and out of
scope of this paper. These locks can be affected by hardware properties, such as idle (C-
state) latencies and operating system behavior. The optimal spin time varies with
different system configurations. They typically depend less on the actual scheduler
behavior than locks implemented by spinning, so their behavior can be more stable over
operating system revisions. Generally, sleeping locks are more difficult to analyze than
simpler locks because they have more states.

http://www.akkadia.org/drepper/futex.pdf
http://www.akkadia.org/drepper/futex.pdf

	Lock Scaling Analysis on Intel® Xeon® Processors
	Chapter 1 Lock Scaling Analysis on Intel® Xeon® Processors
	1.1 Introduction
	1.2 Lock scaling analysis
	1.2.1 Factors to consider in lock scaling
	1.2.1.1 Importance of software latency assumptions
	1. The time that each thread spends in the critical section (critical section time). This latency represents how much work is done by a thread each time it acquires the lock.

	1.2.1.2 Importance of thread count

	1.2.2 Lock scaling results
	1.2.2.1 Lock scaling with >200ns critical section times
	1.2.2.2 Lock scaling with <200ns critical section times
	1.2.2.3 Applicability of the analysis

	1.3 Lock coarsening
	1.3.1 Lock granularity
	1.3.2 Fairness and unfairness

	1.4 Lock scaling on future Intel processors
	1.5 Recommendations
	1. The time each thread spends in the critical section holding the lock
	1. Increase the amount of work done while holding the lock. If the time that the lock is held is more than a few hundred nanoseconds, then the time to transfer the lock between different threads does not negatively impact the scalability of the lock ...

	1.6 Summary

	Appendix A Locks
	A.1 Overview
	A.2 Spinlock
	A.2.1 Interaction with the operating system

	A.3 Ticket lock
	A.3.1 Interaction with the operating system

	A.4 Read/write locks
	A.4.1 Interaction with the operating system

	A.5 Big read locks
	A.5.1 Interaction with the operating system

	A.6 Sleeping locks

