

Intel® Transactional Synchronization Extensions
(Intel® TSX) Linux update

Andi Kleen
Intel OTC

Linux Plumbers
Sep 2013

Elision

● Elision : the act or an instance of omitting
something : omission

On blocking

Non-blockingBlocking

Credit: Wikipedia/Mintguy/Frederik/Romanm
Creative Commons Attribution share alike 3.0

Credit: Wikipedia/Mintguy/Frederik/Romanm
Creative Commons Attribution share alike 3.0

Idea from Dave Boucher

Speculative execution

Time

T0 T1 T2 T3 T0 T1 T2 T3

Concurrent execution
No lock transfer latencies

Lock transfer latencies
Serialized execution

Intel TSX quick overview

User controlled speculative transactional execution mode in CPU

Implemented in Intel© 4th generation Core® (“Haswell”)

Two ISA interfaces (HLE/RTM) to specify transactions

Transactions best effort (need fallback path)

HLE adds XACQUIRE/XRELEASE instruction prefixes for atomic ops

Lock elision done transparently in same code path

Nop on old CPUs

RTM uses new XBEGIN/XEND instructions

Explicit abort handler, can use lock as fallback path

XTEST and XABORT

Basic RTM elided lock

elided_lock(lock) {
 if (_xbegin() ==
 _XBEGIN_STARTED) {
 if (lock is free)
 // in read set
 return;
 _xabort(0xff);
 //0xff is lock busy
 }
 // come here on abort
 original locking code
}

elided_unlock(lock) {
 if (lock is free)
 _xend();
 else
 unlocking code
}

 Simple wrapping code
pattern

 Original lock code

An elided lock ...

● Is a fast path
● Is non-blocking
● Acts mostly like a recursive reader lock
● Locks every cache line individually
● May always fall back
● Uses the standard locking programing model

Linux Implementation overview

 Kernel TSX perf profiling support
– Needed to understand speculation

 Kernel TSX lock elision
– Elide kernel locks

 Glibc mutex elision
– Elide application locks

 Various custom locks elided in applications
 Libitm (gcc)
 Applications with non scalable locking primary

target

Lock adaptation

 RTM locks with adaptive abort handler
− Skips elision when not successful

 Safety net to avoid regressions
− And prevents us from having to exercise all

possible locks/workloads
 Simple algorithm used currently

− State stored in lock itself
− Lots of tunables, still looking for best configuration
− Area for future work

Future user elision work

● Extend glibc code: recursive locks, rwlock
● Better adaptation algorithms
● Tuning interface
● Go beyond POSIX

– C++11 locking, new lock interface for C
– Need new interface to elide condition variables

– Will also allow better fast path without dynamic dispatch
– Make adaptive spinning the default

Enabling applications

● Applications with their own lock library
● RTM wrapper or HLE
● Challenge: sometimes custom locking spread

over the code
● Need to identify critical sections
● After enabling typically some tuning is useful to

lower aborts
– For example avoid statistic counters
–

Kernel elision

● Eliding mutex, spin, rw, bitspin, rwsem, custom
lock

● Kernel is already quite scalable
● Need some changes to lower conflicts

– Most of these changes help without elision

● Only win in some areas with big locks
– Occasional losses due to too fine grained locking

– May benefit from lock coarsening

Kernel locks that do not elide well
(without changes)

 MMIO, writing to DMAed data
(device driver)

 TLB flush (write faults)

 IPI, APIC, MSR accesses

 Scheduler (high chance of
conflict, WIP)

 BUG_ON(!*_is_locked())

 “meta locking” (btrfs)

– But btrfs would benefit a lot!
 False sharing

 Common conflicts, (page
allocator, ext4 extent trees,
reference counts)

 Rewriting unchanged data
often (flags)

 Large copies, clears: capacity
(read,write)

 Unmatched lock*_irq/unlock

Handled with adaptation, some minor annotation and changes

References

● http://www.intel.com/software/tsx
● Intel optimization guide, Chapter 12
● Glibc: http://github.com/andikleen/glibc
● Kernel:

– http://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-misc.git

– hle*/combined elision branches

– hsw/pmu* perf support

– Branch names are changing!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

