Intel® Transactional Synchronization Extensions
(Intel® TSX) Linux update

Andi Kleen
Intel OTC

Linux Plumbers
Sep 2013



Elision

» Elision : the act or an instance of omitting
something : omission



On blocking

Blocking Non-blocking

-
-
=
-
-
-
=
=
-
=
=
-
=
=

Credit: Wikipedia/Mintguy/Frederik/Romanm

Credit: Wikipedia/Mintquy/Frederik/R
Creative Commons Attribution share alike 3.0 redi [pedialViniguyrt rederixyromanm

Creative Commons Attribution share alike 3.0

Idea from Dave Boucher



Speculative execution

Time

T0

TI

T2 T3

Lock transfer latencies
Serialized execution

=)

10

T1 T2 13

Concurrent execution
No lock transfer latencies




Intel TSX quick overview

User controlled speculative transactional execution mode in CPU
Implemented in Intel© 4th generation Core® (“Haswell”)
Two ISA interfaces (HLE/RTM) to specify transactions

Transactions best effort (need fallback path)

HLE adds XACQUIRE/XRELEASE instruction prefixes for atomic ops
Lock elision done transparently in same code path

Nop on old CPUs

RTM uses new XBEGIN/XEND instructions
Explicit abort handler, can use lock as fallback path

XTEST and XABORT



Basic RTM elided lock

elided lock(lock) {
if (_xbegin() ==
_XBEGIN_STARTED) {
if (lock is free)
// in read set
return;
_xabort (0xff) ;
//0xff is lock busy

}

// come here on abort
original locking code

elided unlock(lock) {
if (lock is free)
_xend() ;
else
unlocking code

}

* Simple wrapping code
pattern
* Original lock code



An elided lock ...

|s a fast path

Is non-blocking

Acts mostly like a recursive reader lock
Locks every cache line individually

May always fall back

Uses the standard locking programing model



Linux Implementation overview

* Kernel TSX perf profiling support
— Needed to understand speculation
* Kernel TSX lock elision
— Elide kernel locks
* Glibc mutex elision
— Elide application locks
* Various custom locks elided in applications
* Libitm (gcc)

* Applications with non scalable locking primary
target



Lock adaptation

* RTM locks with adaptive abort handler
- Skips elision when not successful
* Safety net to avoid regressions

- And prevents us from having to exercise all
possible locks/workloads

* Simple algorithm used currently

- State stored in lock itself
- Lots of tunables, still looking for best configuration
- Area for future work



Future user elision work

* Extend glibc code: recursive locks, rwlock
e Better adaptation algorithms
* Tuning interface

* Go beyond POSIX

- C++11 locking, new lock interface for C

- Need new interface to elide condition variables

- Will also allow better fast path without dynamic dispatch
- Make adaptive spinning the default



Enabling applications

* Applications with their own lock library
« RTM wrapper or HLE

* Challenge: sometimes custom locking spread
over the code

* Need to identify critical sections

» After enabling typically some tuning is useful to
lower aborts

- For example avoid statistic counters



Kernel elision

Eliding mutex, spin, rw, bitspin, rvsem, custom
lock

Kernel is already quite scalable
Need some changes to lower conflicts
- Most of these changes help without elision

Only win in some areas with big locks

- Occasional losses due to too fine grained locking
- May benefit from lock coarsening



Kernel locks that do not elide well
(without changes)

* MMIO, writing to DMAed data * Common conflicts, (page
(device driver) allocator, ext4 extent trees,

- TLB flush (write faults) reference counts)
* |PI, APIC, MSR accesses

* Scheduler (high chance of .
conflict, WIP)

* BUG_ON(!*_is_locked())
* “meta locking” (btrfs)

— But btrfs would benefit a lot!
False sharing

* Rewriting unchanged data
often (flags)

Large copies, clears: capacity
(read,write)

* Unmatched lock™ _irg/unlock

Handled with adaptation, some minor annotation and changes



References

http://www.intel.com/software/tsx
Intel optimization guide, Chapter 12
Glibc: http://github.com/andikleen/glibc

Kernel:

- http://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-misc.git
— hle*/combined elision branches
— hsw/pmu* perf support

- Branch names are changing!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

