
Linux kernel scaling

Andi Kleen and Tim Chen

Intel Corporation

Sep 2011

222
Intel Confidential Software and Services Group

Case study:
MOSBENCH Exim Mail Server Workload

• Configure exim to use tmpfs for all mutable files - spool files,
log files, and user mail files. No file system / IO test.

• Clients run on the same machine as exim. Each repeatedly
opens an SMTP connection to the mail server.

• Sends 10 separate 20-byte messages to a local user.

• Running on a 4S 40Core/80Thread system.

333
Intel Confidential Software and Services Group

Exim initial profile on 2.6.38

Baseline

- 52.82% exim [kernel.kallsyms] [k] do_raw_spin_lock
 - do_raw_spin_lock
 - 99.87% _raw_spin_lock
 + 39.61% dput
 + 38.61% dget
 + 18.68% nameidata_drop_rcu
 + 0.65% nameidata_drop_rcu_last
 + 0.63% __do_fault
+ 11.14% exim [kernel.kallsyms] [k] vfsmount_lock_local_lock
+ 4.10% exim [kernel.kallsyms] [k] vfsmount_lock_global_lock_

444
Intel Confidential Software and Services Group

File System – Fix absolute path names #1

• Slow path of directory entry (dentry) lookup requires
updating the reference count of all the dentries in the
directory path. Cache line bouncing on reference counts.

• 2.6.38 introduces RCU path walk. Per dentry seqlock detects
dentry modificatoins

• Absolute paths always dropped out of RCU because of
incorrect seqlock initialization of root.

• Fix merged 2.6.39.

555
Intel Confidential Software and Services Group

Exim Profile (after fix #1)

Throughput at 197% relative to baseline

- 29.47% exim [kernel.kallsyms] [k] do_raw_spin_lock
 - do_raw_spin_lock
 - 99.49% _raw_spin_lock
 + 40.42% dput
 + 20.38% dget
 + 17.91% nameidata_drop_rcu
 + 11.63% __do_fault
 + 3.07% __d_lookup
 + 2.51% anon_vma_lock.clone.11
 + 0.75% nameidata_drop_rcu_last
 + 0.54% unlink_file_vma
- 9.98% exim [kernel.kallsyms] [k] vfsmount_lock_local_lock
+ 5.80% exim [kernel.kallsyms] [k] filemap_fault
+ 2.54% exim [kernel.kallsyms] [k] vfsmount_lock_global_lock_online
+ 2.26% exim [kernel.kallsyms] [k] page_fault

666
Intel Confidential Software and Services Group

File System – Path Walk Speedup #2

• RCU path walk still keeps failing after we've fixed the
initialization of seq_number in the seqlock.

•LSM layer (inode_exec_permission) unconditionally drops out
of RCU path walk

• Fix the security code to support RCU path walk.

• Fix merged 2.6.39.

777
Intel Confidential Software and Services Group

File System - Mount Lock (#3)

• mntput_no_expire and lookup_mnt separate short term and
long term counts. Short term is per cpu, long term is global.

• vfsmount “put” had to sum up all short term counters, unless
there is a long term mount that pins the entry.

• pipe_fs and other internal file systems always triggered the
short term mount case because they weren't mounted, but
still used

• Fix merged 3.0.

888
Intel Confidential Software and Services Group

Profile after Fix #2 & #3

Throughput at 256% relative to baseline

- 17.00% exim [kernel.kallsyms] [k] filemap_fault
 - filemap_fault
 + 99.88% __do_fault
- 12.45% exim [kernel.kallsyms] [k] do_raw_spin_lock
 - do_raw_spin_lock
 - 98.34% _raw_spin_lock
 + 78.45% __do_fault
 + 8.83% anon_vma_lock.clone.11
 + 1.90% unlink_file_vma
 + 1.27% dup_mm
 ...
+ 3.14% exim [kernel.kallsyms] [k] page_fault
+ 2.49% exim [kernel.kallsyms] [k] clear_page_c
+ 2.24% exim [kernel.kallsyms] [k] unmap_vmas

999
Intel Confidential Software and Services Group

File Readahead - Cache Line Bouncing (#4)

• File map page faults of memory mapped files are taking a lot
of time.

• The read ahead parameters ra->mmap_miss and
ra->prev_pos caused a lot of cache line bouncing when they
were updated frequently.

• In our tests, many of our test files are stored in tmpfs within
the memory for speed, which makes readahead of these files
unnecessary.

• Turn off readahead and update of readahead parameters for
tmpfs.

• This could still be an issue for file system which are fast, but
still need readahead.

• Fix merged 2.6.39.

101010
Intel Confidential Software and Services Group

Profile after Fix #4

Throughput at 290% relative to baseline

- 24.41% exim [kernel.kallsyms] [k] do_raw_spin_lock
 - do_raw_spin_lock
 - 99.22% _raw_spin_lock
 + 77.96% anon_vma_lock.clone.11
 + 14.85% vma_adjust
 + 1.06% unlink_file_vma
 + 0.57% __pte_alloc
 + 0.54% dup_mm
+ 3.45% exim [kernel.kallsyms] [k] page_fault
+ 2.64% exim [kernel.kallsyms] [k] clear_page_c
+ 2.24% exim [kernel.kallsyms] [k] unmap_vmas
+ 1.67% exim [kernel.kallsyms] [k] page_cache_get_speculative

111111
Intel Confidential Software and Services Group

Memory -
Reduce Anon VMA Lock Contention #5

• Exim forks many child processes to handle incoming email.

• The initial virtual memory areas for child processes are cloned
from parents and shares lock with parent process's vma.

• Aggressive merging of child processes' new vmas with the
cloned vmas will introduce contention on the parent process
anon_vma lock (even though vmas are local).

• Avoiding the merging of child processes' vmas with the cloned
vmas greatly reduces the contentions.

• When we insert a new memory area to vma and change only
vma->end, anon_vma locking is unnecessary. Remove that.

• Fixes merged 2.6.39.

121212
Intel Confidential Software and Services Group

Anon vma chains

Anon VMA

AVC

AVC

VMA

VMA

AVC VMA

Lock

Exec parent

Process 1

Process 2

Process 1

Process 3

131313
Intel Confidential Software and Services Group

Profile after Fix #5

Throughput at 381% relative to baseline

- 4.80% exim [kernel.kallsyms] [k] do_raw_spin_lock
 - do_raw_spin_lock
 - 94.94% _raw_spin_lock
 + 51.42% anon_vma_lock.clone.11
 + 6.08% unlink_file_vma

...

+ 4.48% exim [kernel.kallsyms] [k] page_fault
+ 3.59% exim [kernel.kallsyms] [k] clear_page_c
+ 2.84% exim [kernel.kallsyms] [k] unmap_vmas

141414
Intel Confidential Software and Services Group

Memory -
Reduce Anon VMA Lock Contention #6

• With frequent forks/exits, there are a lot of chaining and de-
chaining of child processes' anon_vmas, needing frequent
acquisition of root anon_vma lock.

• By doing batch chaining of the anon_vmas, we can do more
work per acquisition of the anon_vma lock, and reduce
contention.

• Regression originally from 2.6.35 caused by a correctness
change: always lock the chain head.

• Batch chaining adopted in v3.0.

• Still slower than 2.6.35.

151515
Intel Confidential Software and Services Group

Problem Visible in Micro-benchmark

161616
Intel Confidential Software and Services Group

Profile after Fix #6

Throughput at 397% relative to baseline

+ 4.61% exim [kernel.kallsyms] [k] page_fault
+ 3.64% exim [kernel.kallsyms] [k] clear_page_c
+ 3.17% exim [kernel.kallsyms] [k] do_raw_spin_lock
+ 2.92% exim [kernel.kallsyms] [k] unmap_vmas
+ 2.22% exim [kernel.kallsyms] [k] page_cache_get_speculative
+ 1.85% exim [kernel.kallsyms] [k] copy_page_c
+ 1.47% exim [kernel.kallsyms] [k] __list_del_entry
- 1.47% exim [kernel.kallsyms] [k] format_decode
 - format_decode
 - 94.57% vsnprintf
 - 98.51% seq_printf
 show_cpuinfo
 seq_read
 proc_reg_read
 vfs_read

171717
Intel Confidential Software and Services Group

libc – Inefficient Functions (#7)

• Exim makes use of Berkeley DB library for data management.
Frequent dbfn_open calls for new exim threads.

• dbfn_open calls glibc's sysconf() to get the number of CPUs to
tune its locking.

• Reads /proc/stat which is very expensive.

• Switch libc to use a direct system call to obtain the number of
cpus.

• Patches not added due to disagreement between libc/kernel.
But you can use http://halobates.de/smallsrc/sysconf.c as
LD_PRELOAD.

http://halobates.de/smallsrc/sysconf.c

181818
Intel Confidential Software and Services Group

Profile after Fix #7

370.4 msgs/sec/core (+18.3 msgs/sec/core)

+ 4.84% exim [kernel.kallsyms] [k] page_fault
+ 3.83% exim [kernel.kallsyms] [k] clear_page_c
- 3.25% exim [kernel.kallsyms] [k] do_raw_spin_lock
 - do_raw_spin_lock
 - 91.86% _raw_spin_lock
 + 14.16% unlink_anon_vmas
 + 12.54% unlink_file_vma
 + 7.30% anon_vma_clone_batch
 + 6.17% dup_mm
 + 5.77% __do_fault
 + 5.77% __pte_alloc
 ...
+ 3.22% exim [kernel.kallsyms] [k] unmap_vmas
+ 2.27% exim [kernel.kallsyms] [k] page_cache_get_speculative
+ 2.02% exim [kernel.kallsyms] [k] copy_page_c
+ 1.63% exim [kernel.kallsyms] [k] __list_del_entry

191919
Intel Confidential Software and Services Group

Summary: Scalability Bottlenecks in 2.6.38

“2.6.38” path-walk security readahead memory memory

0

50

100

150

200

250

300

350

400

450

Exim Throughput

Throughput vs 2.6.38

Scalability Bottleneck

202020
Intel Confidential Software and Services Group

But the next regression hit shortly after:

2.6.39(vanilla) 100.0%

2.6.39+readahead-fix 166.7% (+66.7%)

Anon VMA lock change in 3.0 (spin lock -> mutex)

3.0-rc2(vanilla) 68.0% (-32%)

After a lot of tweaking from Linus and others:

3.0-rc2+fixes 140.3% (+40.3%)
 (anon_vma clone + unlink + chain_alloc_tweak)

• Lost 26% again compared to 2.6.39+rafix

212121
Intel Confidential Software and Services Group

Summary Exim:

• Relatively simple workload exposed lots of scalability
problems in the kernel

• Mutexes and anon vma are still a serious problem

• Looking for other good workloads with similar properties

• Anyone have any?

222222
Intel Confidential Software and Services Group

Network stack

• Testing MOSBENCH memcached workload over Ethernet.

• Load generator talking to 4S server.

232323
Intel Confidential Software and Services Group

Neighbour cache scalability

1When no other TCP connection between load generator/server.
Reference count changes in neighbor structure is expensive when it is done for
every message.

- 27.06% memcached [kernel.kallsyms] [k] atomic_add_unless.clone.34
 - atomic_add_unless.clone.34
 - neigh_lookup
 __neigh_lookup_errno.clone.17
 arp_bind_neighbour
 rt_intern_hash
 __ip_route_output_key
 ip_route_output_flow
 udp_sendmsg

- 13.33% memcached [kernel.kallsyms] [k] atomic_dec_and_test
 - atomic_dec_and_test
 - dst_destroy
 - dst_release
 - skb_dst_drop.clone.55

242424
Intel Confidential Software and Services Group

Avoid Neighbour Cache by establishing TCP
Connection: Now routing cache ref count
20.54% memcached [kernel.kallsyms] [k] _atomic_dec_and_lock
 │ <+> _atomic_dec_and_lock
 │ [.] inet_putpeer
 │ [.] ipv4_dst_destroy
 │ [.] dst_destroy
 │ [.] dst_release
12.48% memcached [kernel.kallsyms] [k] inet_getpeer
 │ [.] inet_getpeer
 │ [.] inet_getpeer_v4
 │ [.] rt_set_nexthop.clone.30
 │ [.] __ip_route_output_key
 │ [.] ip_route_output_flow
 │ [.] udp_sendmsg
 │ [.] inet_sendmsg
 │ [.] __sock_sendmsg
 │ [.] sock_sendmsg
 │ [.] __sys_sendmsg
 │ [.] sys_sendmsg
 │ [.] system_call_fastpath
 │ [.] __sendmsg
11.80% memcached [kernel.kallsyms] [k] addr_compare
 3.09% memcached [kernel.kallsyms] [k] do_raw_spin_lock

252525
Intel Confidential Software and Services Group

Routing Cache: What to Do?

• Feedback from network maintainers: disable routing cache.

• echo 0 > /proc/sys/net/ipv4/rt_cache_rebuild_count

(bonus price for most obscure way to do important tunable)

262626
Intel Confidential Software and Services Group

Now INET PEER shows up
(route cache disabled, TCP connection)
15.97% memcached [kernel.kallsyms] [k] _raw_spin_lock
 |
 --- _raw_spin_lock
 |
 |---- _atomic_dec_and_lock
 | inet_putpeer
 | ipv4_dst_destroy
 | dst_destroy
 | dst_release
 | dev_hard_start_xmit
 | dev_queue_xmit
 | neigh_resolve_output
 | ip_finish_output2
10.97% memcached [kernel.kallsyms] [k] _raw_spin_lock_bh
 |
 --- _raw_spin_lock_bh
 |
 |---- inet_getpeer
 | rt_set_nexthop
 | __ip_route_output_key
 | ip_route_output_flow
 | udp_sendmsg
 | inet_sendmsg

272727
Intel Confidential Software and Services Group

INET PEER

• Used to cache information for destination IP addresses.

• insert/remove peers from unused_peers.list, contending on
unused_peers spin lock.

• Constantly flip peers refcnt between 0 and 1.

• Solution was to remove the unused_peers list and perform
garbage correction on-the-fly at lookup time (by Eric
Dumazet).

282828
Intel Confidential Software and Services Group

Summary networking

•Biggest problems are various reference counts

•Some workarounds/tunings are unexpected
– “open ssh connection” avoids neighbor cache ref count

•Routing cache is a big problem
– But you can turn it off

•Defaults out of the box don't scale well

VM

mmap_sem per process

page access/sec

0

500000

1000000

1500000

2000000

2500000

3000000

0 10 20 30 40 50 60 70

Threads

p
ag

es
/s

ec

With Linus Pre-fault patch Vanilla Kernel

Experimental pre-fault patch improves baseline, but does not give real scalability

313131
Intel Confidential Software and Services Group

Predictive page clearing outside lock

1 2 3 4 5 6 7 8 9 10111213141516
0

1

2

3

4

Predictive clear

processes
processes_idle
threads
threads_idle

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

Page fault baseline

processes
processes_idle
threads
threads_idle

• Biggest cost inside lock is usually page clearing (for
anonymous).

• Idea: move clearing “predictively” outside.

• Increases thread scaling to same as process scaling

323232
Intel Confidential Software and Services Group

Page fault profile: processes

- 45.63% page_fault1_pro [kernel.kallsyms] [k] clear_page_c
 + clear_page_c
 + __alloc_pages_nodemask
- 7.43% page_fault1_pro [kernel.kallsyms] [k] _raw_spin_lock
 - _raw_spin_lock
 + 47.95% handle_pte_fault
 + 28.47% free_pcppages_bulk
 + 20.05% get_page_from_freelist

•Limited by page table lock, zone lock

•Transparent huge pages are also costly (disabled here)

•Thread case still limited by mm_sem

333333
Intel Confidential Software and Services Group

Zone LRU Lock

• Does not scale well. Problem is too many cores on a node
now.

• One example was workload where activate_page() is
frequently used, such as read on mmaped sparse file shared
between processes
– Activate pages in batches. This approach was merged in v3.0

• Acquired also when adding pages to a zone's lru_cache and
getting pages from freelist in a zone. For page fault tests by
multiple processes, we're spending 40% of cpu time
contending this lock.

•No general fix available so far. Do more batching?

343434
Intel Confidential Software and Services Group

Conclusion

• Scalability is like an onion:
– one bottleneck fixed exposes the next

• This was just a few selected problems.

• Many more problems in the kernel.

• Still it scales reasonably for many workloads: but there are
always more problems to fix.

• Interested in similar scalability problems you encounter.

353535
Intel Confidential Software and Services Group

Backup

363636
Intel Confidential Software and Services Group

Scaling Macro Benchmark Suites

• Multicore Operating System Benchmarks - MOSBENCH

– Macro Benchmark suite
• Exim – mail server benchmark
• Memcache – object cache used frequently by web servers
• Apache – web server
• Postgres SQL – SQL database
• Gmake – parallel build of kernel
• Psearchy – parallel text indexer

373737
Intel Confidential Software and Services Group

Scaling Micro Benchmark Suites

• Will it Scale?
– Suite of micro benchmarks with parallel execution of processes or threads,

exercising basic system calls or operations concurrently
– Originally from IBM OzLabs
– Vary the number of processes/threads from 1 to number of cpus
– Workload includes

• Memory - brk, malloc/free, mmap/munmap, page fault,
• Scheduling - context switch, sched_yield
• Locking - futex, pthread mutex, posix semaphores
• Files - file write, file lseek, file open/close, socket read/write, poll of fds,

eventfd read/write

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION
WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES
NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.
Intel may make changes to specifications, product descriptions, and
plans at any time, without notice.
All dates provided are subject to change without notice.
Intel is a trademark of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2011, Intel Corporation. All rights are protected.

	<insert Presentation Title here>
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	<Slide Title>
	Slide 37
	Slide 38

