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Case study:
MOSBENCH Exim Mail Server Workload 

• Configure exim to use tmpfs for all mutable files - spool files,  
log files, and user mail files. No file system / IO test.

• Clients run on the same machine as exim. Each repeatedly 
opens an SMTP connection to the mail server. 

• Sends 10 separate 20-byte messages to a local user.

• Running on a 4S 40Core/80Thread system.
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Exim initial profile on 2.6.38

Baseline

-     52.82%          exim  [kernel.kallsyms]              [k] do_raw_spin_lock
   - do_raw_spin_lock
      - 99.87% _raw_spin_lock
         + 39.61% dput
         + 38.61% dget
         + 18.68% nameidata_drop_rcu
         + 0.65% nameidata_drop_rcu_last
         + 0.63% __do_fault
+     11.14%          exim  [kernel.kallsyms]              [k] vfsmount_lock_local_lock
+      4.10%          exim  [kernel.kallsyms]              [k] vfsmount_lock_global_lock_
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File System – Fix absolute path names #1 

• Slow path of directory entry (dentry) lookup requires 
updating the reference count of all the dentries in the 
directory path.  Cache line bouncing on reference counts. 

• 2.6.38 introduces RCU path walk.  Per dentry seqlock detects 
dentry modificatoins 

• Absolute paths always dropped out of RCU because of 
incorrect seqlock initialization of root.

• Fix merged 2.6.39.
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Exim Profile (after fix #1)

Throughput at 197% relative to baseline

-     29.47%             exim  [kernel.kallsyms]              [k] do_raw_spin_lock
   - do_raw_spin_lock
      - 99.49% _raw_spin_lock
         + 40.42% dput
         + 20.38% dget
         + 17.91% nameidata_drop_rcu
         + 11.63% __do_fault
         + 3.07% __d_lookup
         + 2.51% anon_vma_lock.clone.11
         + 0.75% nameidata_drop_rcu_last
         + 0.54% unlink_file_vma
-      9.98%             exim  [kernel.kallsyms]              [k] vfsmount_lock_local_lock
+      5.80%             exim  [kernel.kallsyms]              [k] filemap_fault
+      2.54%             exim  [kernel.kallsyms]              [k] vfsmount_lock_global_lock_online
+      2.26%             exim  [kernel.kallsyms]              [k] page_fault
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File System – Path Walk Speedup #2

• RCU path walk still keeps failing after we've fixed the 
initialization of seq_number in the seqlock.

•LSM layer (inode_exec_permission) unconditionally drops out 
of RCU path walk 

• Fix the security code to support RCU path walk.

• Fix merged 2.6.39.
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File System - Mount Lock (#3)

• mntput_no_expire and lookup_mnt separate short term and 
long term counts. Short term is per cpu, long term is global.

• vfsmount “put” had to sum up all short term counters, unless 
there is a long term mount that pins the entry.

• pipe_fs and other internal file systems always triggered the 
short term mount case because they weren't mounted, but 
still used

• Fix merged 3.0.
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Profile after Fix #2 & #3

Throughput at 256% relative to baseline

-     17.00%          exim  [kernel.kallsyms]              [k] filemap_fault
   - filemap_fault
      + 99.88% __do_fault
-     12.45%          exim  [kernel.kallsyms]              [k] do_raw_spin_lock
   - do_raw_spin_lock
      - 98.34% _raw_spin_lock
         + 78.45% __do_fault
         + 8.83% anon_vma_lock.clone.11
         + 1.90% unlink_file_vma
         + 1.27% dup_mm
         ...
+      3.14%          exim  [kernel.kallsyms]              [k] page_fault
+      2.49%          exim  [kernel.kallsyms]              [k] clear_page_c
+      2.24%          exim  [kernel.kallsyms]              [k] unmap_vmas
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File Readahead - Cache Line Bouncing (#4)

• File map page faults of memory mapped files are taking a lot 
of time. 

• The read ahead parameters ra->mmap_miss and 
ra->prev_pos caused a lot of cache line bouncing when they 
were updated frequently.

• In our tests, many of our test files are stored in tmpfs within 
the memory for speed, which makes readahead of these files 
unnecessary.

• Turn off readahead and update of readahead parameters for 
tmpfs.

• This could still be an issue for file system which are fast, but 
still need readahead.

• Fix merged 2.6.39.
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Profile after Fix #4

Throughput at 290% relative to baseline

-     24.41%          exim  [kernel.kallsyms]              [k] do_raw_spin_lock
   - do_raw_spin_lock
      - 99.22% _raw_spin_lock
         + 77.96% anon_vma_lock.clone.11
         + 14.85% vma_adjust
         + 1.06% unlink_file_vma
         + 0.57% __pte_alloc
         + 0.54% dup_mm
+      3.45%          exim  [kernel.kallsyms]              [k] page_fault
+      2.64%          exim  [kernel.kallsyms]              [k] clear_page_c
+      2.24%          exim  [kernel.kallsyms]              [k] unmap_vmas
+      1.67%          exim  [kernel.kallsyms]              [k] page_cache_get_speculative
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Memory - 
Reduce Anon VMA Lock Contention #5

• Exim forks many child processes to handle incoming email.

• The initial virtual memory areas for child processes are cloned 
from parents and shares lock with parent process's vma.

• Aggressive merging of child processes' new vmas with the 
cloned vmas will introduce contention on the parent process 
anon_vma lock (even though vmas are local).

• Avoiding the merging of child processes' vmas with the cloned 
vmas greatly reduces the contentions.

• When we insert a new memory area to vma and change only 
vma->end, anon_vma locking is unnecessary. Remove that.

• Fixes merged 2.6.39.
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Anon vma chains
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Profile after Fix #5

Throughput at 381% relative to baseline

-      4.80%          exim  [kernel.kallsyms]        [k] do_raw_spin_lock
   - do_raw_spin_lock
      - 94.94% _raw_spin_lock
         + 51.42% anon_vma_lock.clone.11
         + 6.08% unlink_file_vma

...

+      4.48%          exim  [kernel.kallsyms]        [k] page_fault
+      3.59%          exim  [kernel.kallsyms]        [k] clear_page_c
+      2.84%          exim  [kernel.kallsyms]        [k] unmap_vmas
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Memory - 
Reduce Anon VMA Lock Contention #6

• With frequent forks/exits, there are a lot of chaining and de-
chaining of child processes' anon_vmas, needing frequent 
acquisition of root anon_vma lock.

• By doing batch chaining of the anon_vmas, we can do more 
work per acquisition of the anon_vma lock, and reduce 
contention.

• Regression originally from 2.6.35 caused by a correctness 
change: always lock the chain head.

• Batch chaining adopted in v3.0.

• Still slower than 2.6.35.
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Problem Visible in Micro-benchmark
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Profile after Fix #6

Throughput at 397% relative to baseline

+      4.61%          exim  [kernel.kallsyms]        [k] page_fault
+      3.64%          exim  [kernel.kallsyms]        [k] clear_page_c
+      3.17%          exim  [kernel.kallsyms]        [k] do_raw_spin_lock
+      2.92%          exim  [kernel.kallsyms]        [k] unmap_vmas
+      2.22%          exim  [kernel.kallsyms]        [k] page_cache_get_speculative
+      1.85%          exim  [kernel.kallsyms]        [k] copy_page_c
+      1.47%          exim  [kernel.kallsyms]        [k] __list_del_entry
-      1.47%          exim  [kernel.kallsyms]        [k] format_decode
   - format_decode
      - 94.57% vsnprintf
         - 98.51% seq_printf
              show_cpuinfo
              seq_read
              proc_reg_read
              vfs_read



171717
Intel Confidential Software and Services Group

libc – Inefficient Functions (#7) 

• Exim makes use of Berkeley DB library for data management. 
Frequent dbfn_open calls for new exim threads. 

• dbfn_open calls glibc's sysconf() to get the number of CPUs to 
tune its locking.

• Reads /proc/stat which is very expensive.   

• Switch libc to use a direct system call to obtain the number of 
cpus.

• Patches not added due to disagreement between libc/kernel. 
But you can use http://halobates.de/smallsrc/sysconf.c as 
LD_PRELOAD. 

http://halobates.de/smallsrc/sysconf.c
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Profile after Fix #7

370.4 msgs/sec/core (+18.3 msgs/sec/core)

+      4.84%          exim  [kernel.kallsyms]        [k] page_fault
+      3.83%          exim  [kernel.kallsyms]        [k] clear_page_c                   
-      3.25%          exim  [kernel.kallsyms]        [k] do_raw_spin_lock               
   - do_raw_spin_lock                                                                   
      - 91.86% _raw_spin_lock                                                           
         + 14.16% unlink_anon_vmas                                                      
         + 12.54% unlink_file_vma                                                       
         + 7.30% anon_vma_clone_batch                                                   
         + 6.17% dup_mm                                                                 
         + 5.77% __do_fault                                                             
         + 5.77% __pte_alloc                                                            
         ...
+      3.22%          exim  [kernel.kallsyms]        [k] unmap_vmas                     
+      2.27%          exim  [kernel.kallsyms]        [k] page_cache_get_speculative     
+      2.02%          exim  [kernel.kallsyms]        [k] copy_page_c                    
+      1.63%          exim  [kernel.kallsyms]        [k] __list_del_entry               
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Summary: Scalability Bottlenecks in 2.6.38

“2.6.38” path-walk security readahead memory memory
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But the next regression hit shortly after:

2.6.39(vanilla)             100.0%

2.6.39+readahead-fix   166.7%  (+66.7%)   

Anon VMA lock change in 3.0 (spin lock -> mutex)

3.0-rc2(vanilla)          68.0%  (-32%)

After a lot of tweaking from Linus and others:

3.0-rc2+fixes  140.3%  (+40.3%)   
                              (anon_vma clone  + unlink + chain_alloc_tweak)

• Lost 26% again compared to 2.6.39+rafix
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Summary Exim:

• Relatively simple workload exposed lots of scalability 
problems in the kernel

• Mutexes and anon vma are still a serious problem

• Looking for other good workloads with similar properties

• Anyone have any?
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Network stack

• Testing MOSBENCH memcached workload over Ethernet.

• Load generator talking to 4S server. 
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Neighbour cache scalability

1When no other TCP connection between load generator/server.
Reference count changes in neighbor structure is expensive when it is done for 
every message.

-     27.06%     memcached  [kernel.kallsyms]             [k] atomic_add_unless.clone.34
      - atomic_add_unless.clone.34
      - neigh_lookup
           __neigh_lookup_errno.clone.17
           arp_bind_neighbour
           rt_intern_hash
           __ip_route_output_key
           ip_route_output_flow
           udp_sendmsg
           
-     13.33%     memcached  [kernel.kallsyms]             [k] atomic_dec_and_test
      - atomic_dec_and_test
      - dst_destroy
         - dst_release
         - skb_dst_drop.clone.55
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Avoid Neighbour Cache by establishing TCP 
Connection: Now routing cache ref count
20.54%        memcached  [kernel.kallsyms]      [k] _atomic_dec_and_lock
                   │   <+> _atomic_dec_and_lock
                   │   [.] inet_putpeer
                   │   [.] ipv4_dst_destroy
                   │   [.] dst_destroy
                   │   [.] dst_release
12.48%        memcached  [kernel.kallsyms]      [k] inet_getpeer
                   │   [.] inet_getpeer
                   │   [.] inet_getpeer_v4
                   │   [.] rt_set_nexthop.clone.30
                   │   [.] __ip_route_output_key
                   │   [.] ip_route_output_flow
                   │   [.] udp_sendmsg
                   │   [.] inet_sendmsg
                   │   [.] __sock_sendmsg
                   │   [.] sock_sendmsg
                   │   [.] __sys_sendmsg
                   │   [.] sys_sendmsg
                   │   [.] system_call_fastpath
                   │   [.] __sendmsg
11.80%        memcached  [kernel.kallsyms]      [k] addr_compare
 3.09%        memcached  [kernel.kallsyms]      [k] do_raw_spin_lock
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Routing Cache: What to Do?

• Feedback from network maintainers: disable routing cache.

• echo 0 > /proc/sys/net/ipv4/rt_cache_rebuild_count  

(bonus price for most obscure way to do important tunable)

 



262626
Intel Confidential Software and Services Group

Now INET PEER shows up
(route cache disabled, TCP connection)
15.97%  memcached  [kernel.kallsyms]    [k] _raw_spin_lock
            |
            --- _raw_spin_lock
               |          
               |---- _atomic_dec_and_lock
               |          inet_putpeer
               |          ipv4_dst_destroy
               |          dst_destroy
               |          dst_release
               |          dev_hard_start_xmit
               |          dev_queue_xmit
               |          neigh_resolve_output
               |          ip_finish_output2  
10.97%  memcached  [kernel.kallsyms]    [k] _raw_spin_lock_bh
            |
            --- _raw_spin_lock_bh
               |          
               |---- inet_getpeer
               |          rt_set_nexthop
               |          __ip_route_output_key
               |          ip_route_output_flow
               |          udp_sendmsg
               |          inet_sendmsg
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INET PEER

• Used to cache information for destination IP addresses. 

• insert/remove peers from unused_peers.list, contending on 
unused_peers spin lock.

• Constantly flip peers refcnt between 0 and 1.

• Solution was to remove the unused_peers list and perform 
garbage correction on-the-fly at lookup time (by Eric 
Dumazet).
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Summary networking

•Biggest problems are various reference counts

•Some workarounds/tunings are unexpected
– “open ssh connection” avoids neighbor cache ref count

•Routing cache is a big problem
– But you can turn it off

•Defaults out of the box don't scale well
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Predictive page clearing outside lock
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• Biggest cost inside lock is usually page clearing (for 
anonymous).

• Idea: move clearing “predictively” outside.

• Increases thread scaling to same as process scaling
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Page fault profile: processes

-     45.63%  page_fault1_pro  [kernel.kallsyms]      [k] clear_page_c         
   + clear_page_c                                                              
   + __alloc_pages_nodemask                                                    
-      7.43%  page_fault1_pro  [kernel.kallsyms]      [k] _raw_spin_lock       
   - _raw_spin_lock                                                            
      + 47.95% handle_pte_fault                                                
      + 28.47% free_pcppages_bulk                                              
      + 20.05% get_page_from_freelist           

•Limited by page table lock, zone lock

•Transparent huge pages are also costly (disabled here)

•Thread case still limited by mm_sem
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Zone LRU Lock

• Does not scale well. Problem is too many cores on a node 
now.

• One example was workload where activate_page() is 
frequently used, such as read on mmaped sparse file shared 
between processes
–  Activate pages in batches.  This approach was merged in v3.0

• Acquired also when adding pages to a zone's lru_cache and 
getting pages from freelist in a zone. For page fault tests by 
multiple processes, we're spending 40% of cpu time 
contending this lock.

•No general fix available so far. Do more batching?
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Conclusion

• Scalability is like an onion: 
– one bottleneck fixed exposes the next

• This was just a few selected problems.

• Many more problems in the kernel.

• Still it scales reasonably for many workloads: but there are 
always more problems to fix.

• Interested in similar scalability problems you encounter.
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Backup
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Scaling Macro Benchmark Suites

• Multicore Operating System Benchmarks - MOSBENCH

– Macro Benchmark suite 
• Exim – mail server benchmark
• Memcache – object cache used frequently by web servers
• Apache – web server
• Postgres SQL – SQL database
• Gmake – parallel build of kernel
• Psearchy – parallel text indexer
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Scaling Micro Benchmark Suites

• Will it Scale?
– Suite of micro benchmarks with parallel execution of processes or threads, 

exercising basic system calls or operations concurrently
– Originally from IBM OzLabs
– Vary the number of processes/threads from 1 to number of cpus
– Workload includes 

• Memory - brk, malloc/free, mmap/munmap, page fault, 
• Scheduling - context switch, sched_yield
• Locking - futex, pthread mutex, posix semaphores
• Files - file write, file lseek, file open/close, socket read/write, poll of fds, 

eventfd read/write
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