On submitting kernel patches

Andi Kleen
Intel Open Source Technology Center
ak@linux.intel.com

Abstract

A lot of groups and individual developers work on im-
proving the Linux kernel. Many innovative new features
are developed all the time. The best and smoothest way
to distribute and maintain new kernel features is to in-
corporate them into the standard mainline source tree.
This involves a review process and some standard con-
ventions. Unfortunately actually getting innovative new
features through review can be a rough ride and some-
times they don’t make it in at all. This paper examines
some common problems for submitting larger changes
and some strategies to avoid problems.

1 Introduction

Many people and groups want to contribute to the Linux
kernel.

Sometimes it can be difficult to get larger changes into
the mainline' sources, especially for new contributors.
This paper examines some of the challenges in sub-
mitting larger patches, and outlines some solutions for
them.

This paper assumes that the reader already knows the
basics of patch submissions. These are covered in de-
tail in various documents in the Linux kernel source tree
(see [4], [3], [5]). Instead of repeating the material in
there this paper covers some strategic higher level points
in patch submission.

Some of the procedures suggested here are also only
applicable to complex or controversal changes. Linux
kernel development isn’t (yet) a bureaucracy with fixed
complicated procedures that cannot be diverged from
and there is quite some flexibility in the process.

Imainline refers to the kernel.org tree as maintained by Linus
Torvalds

2 Why submit kernel patches to mainline?

There are many good reasons not to keep changes pri-
vate but to submit them to Linus Torvalds’ mainline
source tree.

e A common approach for companies new to Linux
is to take a snapshot of one kernel version (and its
associated userland) and try to standardize on that
version forever. But freezing on old versions for a
long time is not a good idea. New features and bug
fixes are constantly being added to mainline and
some of them will be eventually needed. Freezing
on a old version cuts off from a lot of free develop-
ment.

While some changes from mainline can be rela-
tively easily backported to older source trees, many
others (and that will likely be the bug fix or feature
you want) can be very difficult to backport. The
Linux kernel infrastructure is constantly evolving
and new changes often rely on newer infrastructure
which is not available in old kernels. And even
relatively simple backports tend to eventually be-
come a maintenance problem when they add up in
numbers because such a tree will diverge quite a lot
from a standard kernel and invalidate previous test-
ing. Then there are also security fixes that will be
missed in trees that are frozen too long. It is pos-
sible to keep up with the security changes in main-
line, but it’s quite expensive requiring constant ef-
fort. And missed security fixes can be very costly
to fix later.

At some point usually, it is required to resync the
code base with mainline when updating to a new
version. Forward porting private changes during
such a version update tend to be hard, especially
if they are complicated or affect many parts of the
kernel. To avoid this problem submit changes to
mainline relatively quickly after developing them,

then they will be part of the standard code base and
still be there after version updates. This will also
give additional code review, additional improve-
ments and bug fixing and a lot of testing for free.

e For changes and redesigns done in mainline, usu-
ally only the requirements of in-tree code are con-
sidered. So, even if an enhancement works first
externally with just standard exported kernel sym-
bols, these might change or be taken away at any
time. The only sure way to avoid that or at least
guarantee an equivalent replacement interface to
prevent breaking your code is to merge into main-
line.

When the code is in mainline, it will be updated
to any interface changes directly or in consultation
with the maintainer. And in mainline, the user base
will also test on the code and provide free quality-
assurance.

e Writing a driver for some device and getting it into
mainline means that all the distributions will auto-
matically pick it up and support that device. That
makes it much easier for users to use in the end
because installing external drivers tends to be com-
plicated and clumsy.

For another perspective on the why to submit changes to
mainline see also Andrew Morton’s presentation [1]

3 Basics of maintenance

All code in the kernel has some maintenance overhead.
Once code is submitted the kernel maintainers commit
themselves to keeping it functional for a long time.? It is
usually expected that the person who submits new code
does most of the maintenance for that code at least ini-
tially. Some of the procedures described here are actu-
ally to demonstrate that the patch submitter is trustwor-
thy enough and they they not just plan to “throw code
over the fence.”

All code has bugs, so initially when code is submitted,
it is assumed contain new defects. Exposing code to
mainline also tends to generate a lot of new testing in
new unexpected circumstances, which will expose new

2There is a procedure to deprecate functionality too, but it is
rarely used and only for very strong reasons.

Linus Torvalds

Sub Maintainer 2 Sub Maintainer 1

Figure 1: Kernel maintainer hierarchy (example) and
patch flow. Andrew Morton is the fallback maintainer
taking care of areas with no own maintainer or of
patches crossing many subsystems

problems. One important part of patch submission is to
make sure these bugs will be handled adequately.

The mainline kernel changes at a very high rate (see [7]
for detailed numbers), and it is very important for the
overall quality of the Linux kernel to keep the bug rate
under control. See [2] for details on the mechanics of
QA and bug reporting in mainline Linux. Because new
code often has more bugs than old code, the maintainers
tend to use various procedures to make sure the bugs
in the new code are minimized early on and handled
quickly. One common way to do this is extensive code
review.

All new kernel code has to go through standard code re-
view to make sure it follows the kernel coding style[6]
and avoids deprecated kernel interfaces and some com-
mon mistakes. Code review will also look for other
functional problems (although that is not the main fo-
cus) and include a design review. Coding style is already
covered extensively in [6], and I won’t cover it in detail
in this paper. In the end, coding style makes only a small
part of a successful piece of kernel code anyways and is
commonly overrated. Still it is a good idea to follow
the coding style in the initial posting so that discussions
about white space and variable naming do not distract
from the actual functionality of the change.

This paper takes a higher level look on the mechanics
of merging larger functionality, and assumes the basic
Linux code requirements (like coding style, using stan-
dard kernel interfaces etc.) are already covered.

4 Types of submissions

4.1 Easy cases

e The easiest case is a clear bug fix. The need for
a bug fix is obvious, and the only argument might
be how the bug is actually fixed. But getting clear
bug fixes merged is usually no problem. Some-
times, the maintainers might want to fix a particu-
lar bug differently than with the original patch, but
then the bug will usually be fixed in a different way
by someone else. The end result is that the bug is
fixed.

Occasionally, there can be differences on what is
considered to be a bug and what is not. In this case,
the submitter has to argue for its case in the review
mail thread.

e Then there are cleanups. Cleanups can range from
very simple as in fixing coding style or making
code sparse’ clean to removing unused code to
refactoring an outdated subsystem. Getting such
cleanups in is not normally a problem, but they
have to be timed right to not conflict with other
higher priority changes during the merge win-
dows*. The maintainers can normally coordinate
that.

e Optimizations are usually welcome, and not too
hard to merge, but there are some caveats. When
the optimization applies only to a very special case,
it is important that it does not impact other more
common cases. And there should be benchmark
numbers (or other data) showing that the optimiza-
tion is useful. The impact of the optimization on
the code base should also be limited (unless it is a
major advantage for an important use-case). Gen-
erally optimizations should not impact maintain-
ability too much. Especially when the optimization
is not a dramatic improvement or does apply only
to some special cases, it is important that it is clean
code and its impact is limited. Cleaning up some
code while doing the optimization will make the
optimization much more attractive.

3Sparse is a static code analysis tool written for the Linux kernel.
See [8]. But like most static checking tools it needs a large amount
of work initially to eliminate false positives.

4Merge window is the two week period after each major releases
where maintainers send major features to Linus Torvalds tree. Most
features and code changes go in at that time

4.2 Hardware drivers

The need can be easily established for submitting hard-
ware drivers for standard devices like network cards or
SCSI adapters. The hardware exists and Linux should
support it and the driver (if correctly written) will in
most cases not impact any other code.

The increasing the bug rate argument in Section 3 is for-
tunately not a serious problem in this special case If the
hardware is not there, the driver will not be used, and
can then also not cause bugs.” Luckily, this means that
because most of the kernel source base are drivers, the
effective bug rate is not raising as quickly as you would
expect from the raw source size growth. Still, this is
a problem maintainers are concerned about, especially
for core kernel code that is used on nearly® all hard-
ware and on drivers for hardware used very widely in
the user-base.

There are well-established procedures to get new drivers
in, and doing so is normally not a problem. In some
cases, depending on the code quality of the driver, it can
take a long time with many iterations of reviews and
fixes.

One more difficult issue are special optimizations for
specific drivers. Most drivers won’t need any, for exam-
ple, a standard NIC or block driver is usually not a prob-
lem to add because it only plugs into the well established
network driver interface. There will be no changes on
other code.

On the other hand, if a hardware device does for ex-
ample RDMA”, and needs special support in the core
networking stack to support that, merging that will be
much more difficult because these code changes could
impact other setups too. One recommended strategy in
this case is to first get basic support in while minimizing
changes to core infrastructure

Sometimes, there is first a rough consensus in the ker-
nel community that particular optimizations should not
be supported for various reasons. One example of this

5This ignores the case of non-essential drivers for common hard-
ware. Adding them could risk increasing the bug rate.

SNearly because there are some special cases like devices with-
out a block driver or MMU-less devices that disable significant parts
of a standard kernel.

7Remote DMA, DMA directly controlled by a remote machine
over the network

is stateful TCP/IP stack off-loading® or native support
for hashed page tables in the core VM. Of course such
consensus can be eventually re-evaluated when the facts
change (or it is demonstrated that the optimization is re-
ally needed), but it is typically difficult to do so.

Once the basic support is in, and you need some specific
changes to optimize for your special case, one reason-
able way to get this done is to do clean-up or redesign
that improves the standard subsystem code (not consid-
ering your changes), and then just happens to make your
particular optimization easier. The trade-off is here that
offseting the maintainability impact on the subsystem
by cleaning it up and improving it first, later re-adding
some complexity for special optimizations can be justi-
fied.

Assuming your proposed change does not fall into one
of these difficult areas, it should be relatively easy to get
it included in mainline once the driver passes the basic
code review.

If it is in a difficult area, it is usually better to at least
try to merge it, but will require much more work. In
a few extreme cases the actual merge will be very hard
to impossible too, for instance when you’re planning to
submit a patch supporting a full TCP offload engine. On
the other hand, if the arguments are good maintainers
sometimes reconsider.

4.3 New core functionality

An especially touchy topic is adding new hooks into the
core kernel, like new notifier chains or new functions
calling into specific subsystems. Very generic notifiers
and hooks tend to have a large maintenance impact be-
cause they have the potential to alter the code flow in un-
expected ways, lead to lock order problems, bugs, and
unexpected behavior, and generally making code harder
to maintain and debug later. That is why maintainers
tend to be not very happy about adding them to their
subsystems. If you really need the hooks anyways trad-
ing cleanups for hooks as described in section 4.2 is a
reasonable (but not guaranteed to be successful) strat-

egy

Usually, there will be a discussion on the need for the
hooks on the mailing list, with commenters suggesting

8Partial stateless offloads like Large-Receive-Offload (LRO) or
TCP Segmentation Offload (TSO) on the other hand are already sup-
ported.

design alternative if the case is not very clear. This may
result in you having to redesign some parts if you cannot
convince the maintainer of the benefits of your particular
design. A redesign might include moving some parts to
userland or doing it altogether differently.

To avoid wasting too much work, it is a good idea to
discuss the basic design publicly before spending too
much time on real production code. Of course doing
prototypes first to measure basic feasibility is still a good
idea. Just do not expect these prototypes to be necessar-
ily merged exactly as they are. As usual prototype code
tends to require some work to make it production ready.

5 Splitting submissions into pieces

It is also fairly important to submit larger changes in
smaller pieces so that reviewers and maintainers can
process the changes step-by-step. Normally this means
splitting a larger patch series into smaller logical chunks
than can be reviewed together. There are exceptions to
this. For example a single driver source file that is com-
pletely new is is normally reviewed together, even when
it is large. But this protocol is fairly important for any
changes to existing code.

These changes must be bisectable:® that is applying or
unapplying any patch in the sequence must still produce
a buildable and working kernel.

Usually, you will need to revise patches multiple times
based on the feedback before they can be accepted.
Avoid patch splitting methods that cause you a lot of
work each time you post. Ideally you keep the split
patches in change set oriented version control system
like git or mercurial or in a patch management system
like quilt[9]. Personally, I prefer quilt for patch man-
agement which has the smoothest learning curve. [10]
has a introduction on using quilt.

It is also recommended to time submissions of large
patch kits. Posting more than 20 patches at a time
will overwhelm the review capacity of the mailing lists.
Group them into logical groups and post these one at a
time with at least a day grace time in between.

Patches should be logical steps with their own descrip-
tions, but they don’t need to be too small. Only create

9Typically used with the “git bisect” command for semi-
automated debugging.

very small (less than 10 lines change) patches if they
are really a logically an self-contained change. On the
other hand, new files typically do not need to be split
up, except when parts of them logically belong to other
changes in other areas.

When you post revised patches, add a version number to
the subject, and also maintain a brief change log at the
end of the patch description.

6 A good description

Submitting a Linux kernel patch is like publishing a pa-
per. It will be scrutinized by a sceptical public. That is
why the description is very important. You should spend
some time writing a proper introduction explaining what
your change is all about, what your motivations were
and what the important design decisions and trade-offs
are.

Ideally you will also already address expected counter
arguments in the description. It is a good idea to browse
the mailing list archives beforehand and to study a few
successful submissions there.

Hard numbers quantifying improvements are always ap-
preciated, too, in the description. If there is something
to measure, measure it and include the numbers. If your
patch is an optimization, measure the improvement and
include the numbers.

The quality of a description can make or break whether
your kernel patch is accepted. If you cannot convince
the kernel reviewers that your work is interesting and
worthwhile, then there will be no code review and with-
out visible code review the code will likely not be
merged.

The linux-kernel mailing list (and other kernel project
mailing lists) are an attention economy, and it is impor-
tant to be competitive here.

7 Establishing trust

If your patch is larger than just a change to an exist-
ing system (like a new driver or similar), you will be
expected to be the maintainer of that code for at least
some time. A maintainer is someone who takes care
of the code of some subsystem, incorporates patches,
makes sure they are up to standard, does some release

engineering to stabilize the code for releases, and sends
changes bundled to the next level maintainer.

This relationship involves some level of trust. The next
level maintainer trusts you to do this job properly, and
keep linux code quality high. If the person is not known
yet from other projects, the only way to get such trust is
to do something publically visible. That could be done
by submitting some self-written code that is high quality
or by fixing bugs.

The maintainers in general favor people who do not only
care about their little piece of code but who take a little
larger view of the code base, and are known to improve,
and fix other areas of the kernel too. This does not nec-
essarily mean a lot of work, and could be just an occa-
sional bug fix.

8 Setting up a community

For larger new kernel features like a file system or a net-
work protocol, it is a good idea to have a small user base
first. This user base is needed for testing, and to make
sure there is actually interest in the new feature.

It is recommended to at least initially (while your com-
munity is still young) keep most of the technical discus-
sion on the linux-kernel mailing list. This way the main-
tainers can see there is an active group working on the
particular feature, fixing bugs, and caring about user’s
needs which then builds up trust for an eventual merge.

9 When to post

Publishing a patch is a very important event in its life-
time. There is a delicate balance between posting too
early and posting too late.

First, once the code basically works, it is a good idea to
post it as a Request-for-Comments (RFC), clearly mark-
ing it as such. For more complicated changes or you're
not sure yet what will be acceptable to the maintainers
you can also post a rough prototype or even just a design
overview what you’re planning as RFC. This would not
be intended to be merged, but just to invite initial com-
ments, and to make other developers aware you have
something in the pipeline. There should already be valu-
able feedback in that stage, and when the feedback in-
cludes requests for larger changes, you do not need to
throw as much work away when you redo code, as you

would had posted a finished patch. For simple changes
the RFC stage can be skipped, but for anything more
complex it is typically a good idea. For very complex
or very controversial changes you will likely go through
multiple RFC stages.

Also, conducting more of the development process visi-
ble on the mailing list is good for building trust, and for
establishing a community as discussed earlier.

On the other hand, actually merging (submitting to a up-
stream maintainer) too early when you still know the
code is unstable is a bad idea. The problem is that even
when some subsystem is marked experimental, people
will start using it, and if it does not work or only works
very badly or worse corrupts data, it will get a bad name.
Getting a bad name early on can be a huge problem later
for a project and it will be hard to ever get rid of that taint
again'®

So there should be some basic stability before actually
submitting it to merge. On the other hand, it definitely
does not need to be finished. Feature completeness or
final performance is not a requirement.

Patches take some time to travel through review and then
the various maintainer trees. If you want a change in
a particular release it is really too late when you only
post it during the two week merge window. Rather when
the merge window opens the patch should be already
through review and traveled up the maintainer hierarchy.
That will take some time. And during the merge window
reviewer capacity tends to be in short order and there
might be none left for you.

10 Dealing with reviews

Code review is an integral part of the Linux code sub-
mission process. It proceeds on public mailing lists with
everyone allowed to comment on your patches. Most of
the comments will be useful and help to improve the
code. This is usually fairly obvious, in this case just
make the changes they request.

Sometimes even when the comments are useful, they
might cause you excessive work: for example when they
ask for a redesign. Sometimes there can be very good
reasons for the redesign, sometimes not. It is your judg-
ment. Or sometimes the reviewer just missed something

10There are several high quality subsystems in the kernel like JFS
or ACPI who suffer from this problem.

and the suggestion wouldn’t actually improve the code
or not handle some case correctly. If the reason is con-
vincing, you should just make the changes if feasible.

In some cases, the reviewer might not realize how much
work it would be to implement a particular change. If
you are not convinced of the reasons for the redesign
or it is just not feasible because it would take too long,
explain that clearly with pure technical arguments on the
mailing list (but do not get yourself dragged into a flame
war).

Then if even after discussion the reviewer still insist on
you making such a change you don’t like, you have to
judge the request: If the the maintainer of the subsys-
tem or a upstream maintainer requests the change, and
you cannot convince them to change their mind, you’ll
have to implement the change or drop the submission. If
someone other than the maintainer requests the change,
it is useful to ask the maintainer for their opinion in a
private mail before embarking on large projects address-
ing review comments.

A reasonable rule of thumb (but there are exceptions of
course!) for how serious to take a reviewer is to check
how much code the person contributed. As a first ap-
proximation, if someone never contributed any patches
themselves their comments are less important,'! and
you could ignore them partly or completely after de-
scribing why on the mailing list. You can look up the
contributions of a particular person in the git version
history. But you really should do that only in extreme
cases when there is no other choice. Linux kernel devel-
opment unfortunately suffers from a shortage of review-
ers so you should consider well before you ignore one
and only do that for very strong reasons.

And sometimes you will notice that the comments from
a particular reviewer are just not constructive. This
comes from the fact that review is open to all on the
internet, and there are occasionally bad reviewers too.
These cases tend to be usually clear, and it is reasonable
not to address such unproductive comments.

11 Merging plans

For complicated patch kits, especially when they depend
on other changes, and after the basic reviews are done,
it is also a good idea to negotiate a merging plan with

"Some people call Linux a “codeocracy” because of that.

the various stake holders. This is especially important if
changes touch multiple subsystems, and might need in
theory to go through multiple maintainers (which can
be quite tedious to coordinate). Merging plan would
be a simple email telling them in what order and when
the patches will go in and get their approval. If a
change touches a lot of subsystems you don’t necessar-
ily need the approval from all maintainers. Such tree
wide sweeps are normally coordinated by the upstream
maintainers.

12 Interfaces

Reviewers and maintainers focus on the interface de-
signs for user space programs. This is because merging
an externally visible interface commits the kernel to the
interface because other code will depend on it. Chang-
ing a published interface later is much harder and often
special backwards compatibility code is required. This
usually leads to very close scrutiny of interfaces by re-
viewers and maintainers before merge. To avoid delays,
it is best to get interface designs right on the first try. On
the other hand this first try should be as simple as pos-
sible and not include ever feature you plan on the first
iteration.

For many submissions, like device drivers for standard
devices or a file system, user space interfaces will not be
relevant because they don’t have user interfaces of their
own.

e There are various interface styles (e.g. file systems,
files in sysfs, system calls, ioctls, netlink, charac-
ter devices) which have different trade offs and are
the right choice for different areas. It is important
to chose the interface style that fits the application
best.

o There should be some design documentation on the
interface included with the submission.

e It is recommended to make any new interfaces as
simple as possible before submission. This will
make reviewing easier and they can be still later
extended.

e 064bit architectures typically use a compat layer to
translate system calls from 32bit application to the
internal 64bit ABI of the kernel. The needs of the
compat layer needs to be considered for new inter-
faces.

e For new system calls or system call extensions
there should be a manpage and some submittable
test code.

e Remove any private debug interfaces before sub-
mission if it’s not clear they will be useful long
term for code maintenance. Alternatively maintain
them as a separate add-on patch.

On the other hand internal kernel interfaces are consid-
ered subject to change and are much less critical.

13 Resolving problems

Sometimes a submission gets stuck during the submis-
sion process. In this case, it is a good idea to just send
private mail to the maintainer who is responsible and ask
advice on how to proceed with the merge. Alternatively,
it is also possible to ask one of the upstream maintainers
(in case the problem is with the maintainer)

There is also the linux-mentors[11] program and the ker-
nelnewbies project[12] who can help with process is-
sues.

14 Case studies

14.1 dprobes

Dprobes [13] was a dynamic tracing project from IBM
originally ported from OS/2 and released as a kernel
patch in 2000. It allowed to attach probes written in a
simple stack based byte code language to arbitrary code
in the kernel or user space, to collect information on ker-
nel behavior non intrusively. Dynamic tracing is a very
popular topic now!2, but back then, dprobes was clearly
ahead of its time. There was not much interest in it.

The dprobes team posted various versions with increas-
ing functionality, but could not really build a user com-
munity. dprobes was a comprehensive solution, cover-
ing both user space and kernel tracing. The user space
tracing required some changes to the Virtual Memory
subsystem that were not well received by the VM de-
velopers. Putting a byte-code interpreter into the ker-
nel was also unpopular, both from its code and because

12Egspecially due to the marketing efforts of a particular operating
system vendor for a much later similar project

the kernel developers as potential user base preferred to
write such code in C. That lead to the original dprobes
code never being merged to mainline and never getting
a real user base.

After a few years of unsuccessful merging attempts,
maintaining the code out of tree and existing in rela-
tive obscurity the project reinvented itself. One part of
dprobes was the ability to set non intrusive breakpoints
to any kernel code. They extracted that facility and al-
lowed it to attach handlers in kernel modules written in
C to arbitrary kernel functions. This new facility was
called kprobes [15]. kprobes became quickly relatively
popular with the kernel community and was merged af-
ter a short time It attracted also significant contributors
from outside the original dprobes project. This was both
because it was a much simpler patch, touching less code,
none of its changes were controversial, and that other
competing operating systems had made dynamic trac-
ing popular by then, so there was generally much more
interest.

Kprobes then was the kernel infrastructure used by the
[14] project started shortly after the merge. systemtap is
a scripting language that generates C source for a kernel
module that then then uses kprobes to trace kernel func-
tions. systemtap and kprobes are popular Linux features
now, but it took a long time to get there. Also, significant
features of the original dprobes (attaching probes to user
space code) are still missing. Support for user probes is
currently developed as part of the utrace project, but un-
fortunately utrace development proceeds slowly and has
unlikely prospects for merge because utrace is a gigan-
tic "redesign everything" patch developed on a private
mailing list.

The lessons to learn from the dprobes story are:

e When building something new and radical, it is
needed to "sell" it at least a little, to get a user base
and interest from reviewers. dprobes, while being
technically a very interesting project, did not com-
pete well initially in the attention economy.

e Don’ttry to put in all features on the first step. Sub-
mit features step-by-step.

e When a particular part of a submission is very un-
popular, strip it out to not let it delay submission of
the other parts.

e Don’t wait too long to redesign if the original de-
sign is too unpopular.

14.2 perfmon2

perfmonl was a relatively simple architecture specific
interface for the performance counters of the 1A64
port. That code was integrated into the mainline Linux
source. Later, it was redesigned as perfmon2[16] with
many more features, support for more performance
monitoring hardware, support for flexible output for-
mats using plug-ins, and its cross architecture support!3.

perfmon2 was developed outside the normal Linux ker-
nel, together with its user land components at [17].
While it was able to attract some code contributions and
made some attempts to be merged into the mainline ker-
nel, it has not succeeded yet. This is mainly because it
has acquired many features on its long out-of-tree devel-
opment path that are difficult to untangle now!'#

This lead to the perfmon2 patch submissions being very
large patches with many interdependencies which are
very difficult to understand and review and debug later.
It also didn’t help that its very flexible plug-in-based
output module architecture was a design pattern not pre-
viously used in Linux. Kernel programmer’s are rela-
tively conservative regarding design patterns. And the
subsystem came with a very complicated system call-
based interface that was difficult to evaluate. Also, many
perfmon? features were relatively old and it was some-
times impossible to reconstruct why they were even
added. In turn, the patches were unable to either attract
enough reviewers or to satisfy the comments of the few
reviews it got. That in turn, didn’t lead to maintainer
confidence in the code and there was no mainline merge
so far, except for some trivial separatable changes.

o Be conservative with novel design patterns (like the
perfmon2 output plug-ins) Kernel programmers are
conservative regarding coding style and not very
open to novel programming styles.

e Don’t combine too many novelties into a single
patch. If you have a lot of new ideas do them step
by step.

Bperfmon? is generally considered to be showing some signs of
the “Second System effect”.

14Often programmers don’t remember ever detail on why they did
some code years before.

e Don’t make the code too flexible internally. Too
much flexibility makes it harder to evaluate.

e Don’t do significant follow-on development out-
side the mainline kernel tree. Concentrate on de-
veloping the basic subsystem without too many
bells and whistles and merge that quickly into the
mainline. Then any additional features requested
by users should be submitted to the mainline incre-
mentally.

o If any optional features are already implemented up
front before merging, develop them as incremental
patches to the core code base, not in an integrated
source tree.

In the author’s opinion, the only promising strategy for
a perfmon2 merge now would be similar to the evolu-
tion from dprobes to kprobes in section 14.1. Go back
to the core competencies: define the core functionality
of a performance counter interface, of develop a “perf-
mon3”, which only implements the core functionality
in a very clean way, and submit that. Then port for-
ward features requested by the user step-by-step from
perfmon2, each time you reevaluate the design of a par-
ticular feature and its user interface. This process would
likely lead to a much cleaner perfmon2 code base. There
is some work underway now by the perfmon2 author to
do this.

15 Conclusion

Submitting code to the mainline Linux kernel is reward-
ing, but also takes some care to be successful. With the
rough guidelines in this paper, I hope some commons
problems while submitting Linux kernel changes can be
avoided.

References

[1] Andrew Morton
kernel.org development and the embedded world
http://userweb.kernel.org/~akpm/
rants/elc-08.odp

[2] Andrew Morton
Production process, bug tracking and quality
assurance of the Linux kernel
http://userweb.kernel.org/~akpm/
rants/hannover-kernel-ga.odp

[3] Documentation/SubmittingDrivers in the Linux
kernel source from
http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[4] Documentation/SubmitChecklist in your Linux
kernel source from
http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[5S] Documentation/SubmittingPatches in the Linux
kernel source from
http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[6] Documentation/CodingStyle in the Linux kernel
source from http://www.kernel.org
Living document. Always refer to the version
from the latest kernel release.

[7] Kroah-Hartmann et al.,
https://www.linux—foundation.org/
publications/linuxkerneldevelopment.
php.

[8] Sparse, the semantic parser,
http://www.kernel.org/pub/software/
devel/sparse/

[9] Quilt, the patch manager,
http:

//savannah.nongnu.org/projects/quilt

[10] Grinbacher,
How to survive with many patches or Introduction
to Quilt,
http://www.suse.de/~agruen/quilt.pdf

[11] http://www.linuxmentors.org
[12] http://www.kernelnewbies.org
[13] http://dprobes.sourceforge.net

[14] Prasad
Locating System Problems using Dynamic
Instrumentation

Proceedings of the Ottawa Linux Symposium
2005

[15] Keniston
Documentation/kprobes.txt in the Linux kernel
source from http://www.kernel.org

[16] Eranian
Perfmon2: A flexible performance monitoring
interface for Linux
Proceedings of the Ottawa Linux Symposium

2006

[17] http://perfmon2.sourceforge.net

This work represents the opinion of the author and not of In-
tel.

This paper is (c) 2008 by Intel. Redistribution rights are
granted per submission guidelines; all other rights reserved.
* Other names and brands may be claimed as the property of
others.

10

