Networking Topics

Andi Kleen
SuSE Labs

Contents

* Non blocking Sockets

© Unix Sockets
" Netlink

" Error handling
* Path MTU discovery

" [Pv6 sockets

Non blocking sockets

 Allows well scaling servers without threads
* Not much locking overhead (=none)
" Requires state machines

* fentl(sockettd, F_SETFL, O_NONBLOCK);

* Needed to handle many sockets (threads are
costly)

Network events

 Incoming data

 Socket ready for writing (socket buffer has room)

" Connection finished

" Error occurred

" Disconnect

 Urgent data arrived.

poll/select

" Ask the kernel in a main loop about events on the
descriptors with poll(2)

" Process event, run state machine on socket and
continue

 Copies a full table in and out the kernel

" Does not scale well: kernel and user has to walk

big tables.

" Very portable and great for small servers.

Signals vs Realtime signals

" Signal is just a bit 1n a mask (cannot be lost)

* Many events compress into one bit

 Realtime signals between SIGRTMIN and
SIGRTMAX

 Realtime signals carry data and are delivered in
order

 Can go lost when the queue overflows

Queued SIGIO

" You get a signal for an event.
 Scales well, no big tables to copy or search.
* Kernel supplies siginfo to the signal handler

" Signals are tied to threads or process groups.

Queued SIGIO HOWTO

" fentl(socketd, F_SETOWN, getpid())
* fentl(sockettd, F_SETSIG, rtsig)

* SA_SIGINFO signal handler gets siginfo_t
argument.

" siginfo- >s1_fd contains fd

" On overflow you get SIGIO and use poll to pick
up events.

" sigtimedwait 1s a nice main loop if you don’t want
signal handlers.

Unix Sockets

" Some basics:

* Unix sockets are for local communication

~ PF_UNIX; AF_UNIX in POSIX speak
* Two flavors: stream socket and datagram socket.
" Fast (your X runs through them)

* Commonly used for local desktop use (e.g.
GNOME's Orbit ORB or X11)

Abstract namespace

" Socket endpoints of well known services are
found via socket nodes 1n the filesystem.

* They do not go away after reboot or when the
server crashes.

" There 1s no easy way to check if a server has
crashed so recovery 1is difficult.

" Abstract namespace 1s a non portable trick to
solve these problems

Abstract namespace 2

* How to use? Simply pass a 0 byte as the first
character of the sockaddr_un.sun_path and then
the abstract name.

" Abstract name only exists as a hash table
internally.

* Goes away when the last reference 1s gone.

 Very simple semantics unlike file system objects

Control messages

" Berkeley and POSIX sockets support control
messages since some time.

" Only works for SOCK_DGRAM sockets.

 Control messages are passed out of band with
datagrams by the kernel.

" Sockets API supplies some standard macros to
encode them.

" Standardized in POSIX/IPv6 API.

Control messages, what good for?

" Credentials passing for Unix sockets.
" File descriptor passing for Unix sockets.

 Setting and receiving interface index/TOS/TTL
for IP and IPv6 packets.

* Sending and receiving IP options (alternative to
RAW sockets)

* Sending and receiving IPv6 extension headers.

Credentials passing

" Often local servers want to check the user and

group 1d of client processes.

* Management using group rights of file system
sockets 1s clumsy and works only for well defined
restrictions, not for logging.

* Credentials passing gives you the process and
user and group 1d of the process that sent the
message.

 Relatively portable if well encapsulated.

Credentials passing, HOWTO

* SO_PASSCRED enables sending of credentials.

" For connected SOCK_STREAM sockets: use the
SO_PEERCRED getsockopt.

* For SOCK_DGRAM the senders can send an
SCM_CREDENTIALS control message with the
datagram. It contains pid/uid/gid

" Sender sets 1ts own values, but kernel checks
them. Root can override it. If client sends nothing
the kernel fills 1in defaults.

File descriptor passing

" Passing file descriptors from one process to
another (»remote dup«)

* Pass a SCM_RIGHTS control message via a
PF_UNIX socket. It contains an fd array.

 Use at least a one byte message to carry it.

" Allows authentication servers for fd resources

 Allows you to avoid threads for more fault
encapsulation.

Netlink

* Message based kernel/user space communication.

* Simple protocol to detect message loss (e.g.
because of out of memory)

" User interface via PF_ NETLINK sockets.

* Currently used for routing messages, interface
setup, firewalling, netlink queuing, arpd, ethertap.
Each has its own netlink family.

Netlink messages

* Has a common header with sequence number,
type, flags, length, sender pid.

* Sender can request an ACK or an ECHO for
reliability.

 Multipart messages are used for table dumps.

" Passes back a nlmsgerr message when a problem
occurs.

Sending a netlink message

* Netlink message buftfers are set up through
macros from linux/netlink.h

" Find the length of the buffer using
NLMSG_SPACE passing payload length

" Allocate a buffer. Setup nlmsghdr at beginning of
buffer. Nlmsg_length 1s computed by
NLMSG_LENGTH.

* Get a pointer to payload using NLMSG_DATA
and set 1t up.

Receiving a netlink message

" Fill a buffer using recvmsg() from a netlink
socket.

" First nlmsghdr 1s beginning of buffer.

 Check if 1t 1s not truncated using NLMSG_OK

" Check the type and it you're interested 1n it get
the payload using NLMSG_DATA. For rtnetlink
don’t forget the rta attributes.

 Get next message using NLMSG_NEXT

Netlink multicast groups

" sockaddr_nl contains a nl_groups bitmask that
allows 32 multicast groups.

 @Groups are specific for the netlink family.

" Only root or the kernel can send to a multicast
group.
" User processes bind to them.

* Useful for listening to updates of some common
resource.

Rtnetlink

" Rtnetlink 1s used to configure the IP stack.
" Superset of the old 1octl interface.

 Can configure and watch interfaces, routes, IP
addresses, routing rules, neighbours (ARP
entries), queueing disciplines and other stuff.

 Kernel uses it internally (ioctls are turned into
netlink)

* User interface in iproute?

* Some groups: Link, Neighbour, Route, Mroute,
TC

Rtnetlink messages

* Messages start with a standard netlink header
(struct nlmsghdr) and a type specific header.

* They come in NEW, GET, DEL flavours for each
object that can be touched.

" GET can dump all objects in the database or only
matching one.

* Messages carry attributes after the main headers.

* Attributes are like small netlink messages with a
rta_attr header.

A few rtnetlink messages:

* NEW/GET/DEL

" ROUTE: struct rtmsghdr and describes a routing
table entry. Has lots of attributes like
RTA_GATEWAY, RTA_OIF, RTA_IIF etc.

* ADDR: struct ifaddrmsg and describes a local IP
address. Has attributes like IFA_LOCAL (local
IP), IFA_LABEL (alias name), etc.

" See include/linux/rtnetlink.h and rtnetlink(7) for a
lot more messages and the details.

Some rtnetlink applications

* Waiting for interface up and down by binding to
RTMGRP_LINK and watching for link up/down

[when the network driver supports the netif_carrier® interface in 2.4 this allows HA
failover and watching for network problems]

* Maintaining an copy of the routing table.

* Maintaining a table of the local IP addresses.

Kernel netlink

" Works using skbuffs.

* Sending can be non blocking
(netlink_unicast/broadcast)

* User context calls callback

" netlink_dump calls your callback with a skbuff
for RTM_GET

* netlink_ack acks packets if requested.

Netlink resources

* Man pages: netlink(7), rtnetlink(7)

" Iibnetlink from iproute2 for higher level interface
and some utility functions

" [usr/include/linux/netlink.h

" fusr/include/linux/rtnetlink.h

* Examples: zebra, bird, iproute2

Error handling

" Networks generate errors (surprise!)

 They are generated locally, by routers on the path
or by the target host.

" Some errors are fatal, others just need action
(retransmit)

" Incoming errors from remote set a pending error
on the socket that caused them and reported on
the next operation on the socket.

* TCP does (nearly) all the work for you

Getting told about UDP errors

" For connected sockets you just get the pending
eITor.

* For unconnected sockets that talk to multiple
targets it 1s hard to find out where the error came
from.

 Linux 2.2 added the error queue interface to solve
the problem.

* Error queue 1s associated with a socket and stores
eITors.

 Error queue messages tell you where the error

How to process error messages

" Enable IP_ RECVERR on the socket
* Do normal IO (sendmsg, recvimsg, etc.)

* On error do a recvmsg with MSG_ERRQUEUE
and a msg_control buffer.

* Original destination 1s in msg_name, error
message in a [IP_RECVERR control message,
original payload in msg_iov. Process it.

" Do another recvmsg/poll on the socket. If it has
still an error set repeat.

Error queue messages

/* linux/errqueue.h */

struct sock_extended_error {
u_int32 tee _errno;, /* errno */
u_int8_t ee_origin; /* Where it came from; see below */
u_int8_t ee_type; /* ICMP type */
u_int8 t ee code; /* ICMP code */
u_int32_tee_info; /* ICMP specific info (gateway or pmtu) */
/* data follows */

'
enum { SOCK_EE_ORIGIN_NONE, SOCK_EE_ORIGIN ICMP, ... };

struct sockaddr_in *SOCK_EE_OFFENDER (struct sock_extended_err *);

Path MTU discovery

* Path MTU 1s the biggest packet size that can go
through a internet path without fragmentation

 Fragmentation is bad: slow, increases probability
of packet loss, makes congestion avoidance
harder, too much work for host and router.

* Path MTU i1s dynamic and changes.
* TCP does the work for you.

* For UDP/RAW the application has to size its
packets correctly

How does PMTUdisc work?

 Sender starts with a reasonable packet size
(interface MTU)

 Sets the Don’ t Fragment bit in the IP header

" When a router would forward to a smaller MTU

he drops it and sends pack a
ICMP_FRAG_NEEDED message.

" Sender receives it.

 Readjusts its 1dea of the MTU and retransmits 1f
appropiate.

PMTUdisc 1in Linux

2.2+ kernel automatically keeps track of path
MTUs in a destination cache.

* Can be turned on/oft per socket using
I[P_PMTU_DISCOVER.

* Can be retrieved using IP_PMTU, but only on
connected sockets.

PMTUdisc: letting the kernel work

© Set IP_PMTU_DISCOVER to
I[P_PMTUDISC_WANT

" Connect a socket to destination and use
IP PMTU to retrieve the PMTU.

 Send packet.
- If EMSGSIZE get new MTU and send again
 Does not support retransmits for async events.

 Kernel keeps state for you.

PMTUdisc: keeping your own state

* Keep a table of destinations with MTU

© Set IP_PMTUDISC_WANT and IP_RECVERR
" Retrieve first MTU

* Send packet

- If EMSGSIZE process error queue.

* Set new MTU ee_data for destination (from
address).

PMTUdisc problems

* PMTU blackholes by misconfigured firewalls that
block ICMP. Check yours!

* Linux missing PMTU blackhole handling.

" PMTUs have to be timed out regularly because of
routing changes.

IPv6 socket basics

* More complicated and bigger sockaddr_in6
(memset O 1t)

" Ports are shared with v4 and stay the same

" [Pv4 can be used with the v6 API.

sockaddr 1n6

 sin6_family: AF_INET6

" sin6_port

© sin6_flowinfo

" sin6_addr

" sin6_scope_id (not in Linux 2.2)

 Kernel transparently hides a IPv4 address if
needed.

IPv6 search- n- replace

" sockaddr_in - > sockaddr_in6 (if nothing depends
on the size)

~ AF/PF_INET - > AF/PF_INET6
" INADDR_ANY - > in6addr_any (+memcpy)
" loopback - > in6addr_loopback

[Pv6 name service

" getaddrinfo / freeaddrinfo. Resolves address and
port.

" getnameinfo does reverse resolution.

" 1net_pton to print IPv6 addresses

IPv6 references

" http://playground.sun.com/pub/ipng/html
* RFC2133 (Basic API)
© RFC2292 (Extended API)

