
Networking Topics

Andi Kleen
SuSE Labs

Contents

" Non blocking Sockets

" Unix Sockets

" Netlink

" Error handling

" Path MTU discovery

" IPv6 sockets

Non blocking sockets

" Allows well scaling servers without threads

" Not much locking overhead (=none)

" Requires state machines

" fcntl(socketfd, F_SETFL, O_NONBLOCK);

" Needed to handle many sockets (threads are

costly)

Network events

" Incoming data

" Socket ready for writing (socket buffer has room)

" Connection finished

" Error occurred

" Disconnect

" Urgent data arrived.

poll/select

" Ask the kernel in a main loop about events on the

descriptors with poll(2)

" Process event, run state machine on socket and

continue

" Copies a full table in and out the kernel

" Does not scale well: kernel and user has to walk

big tables.

" Very portable and great for small servers.

Signals vs Realtime signals

" Signal is just a bit in a mask (cannot be lost)

" Many events compress into one bit

" Realtime signals between SIGRTMIN and

SIGRTMAX

" Realtime signals carry data and are delivered in

order

" Can go lost when the queue overflows

Queued SIGIO

" You get a signal for an event.

" Scales well, no big tables to copy or search.

" Kernel supplies siginfo to the signal handler

" Signals are tied to threads or process groups.

Queued SIGIO HOWTO

" fcntl(socketd, F_SETOWN, getpid())

" fcntl(socketfd, F_SETSIG, rtsig)

" SA_SIGINFO signal handler gets siginfo_t

argument.

" siginfo− >si_fd contains fd

" On overflow you get SIGIO and use poll to pick

up events.

" sigtimedwait is a nice main loop if you don’ t want

signal handlers.

Unix Sockets

" Some basics:

" Unix sockets are for local communication

" PF_UNIX; AF_UNIX in POSIX speak

" Two flavors: stream socket and datagram socket.

" Fast (your X runs through them)

" Commonly used for local desktop use (e.g.

GNOME’ s Orbit ORB or X11)

Abstract namespace

" Socket endpoints of well known services are

found via socket nodes in the filesystem.

" They do not go away after reboot or when the

server crashes.

" There is no easy way to check if a server has

crashed so recovery is difficult.

" Abstract namespace is a non portable trick to

solve these problems

Abstract namespace 2

" How to use? Simply pass a 0 byte as the first

character of the sockaddr_un.sun_path and then

the abstract name.

" Abstract name only exists as a hash table

internally.

" Goes away when the last reference is gone.

" Very simple semantics unlike file system objects

Control messages

" Berkeley and POSIX sockets support control

messages since some time.

" Only works for SOCK_DGRAM sockets.

" Control messages are passed out of band with

datagrams by the kernel.

" Sockets API supplies some standard macros to

encode them.

" Standardized in POSIX/IPv6 API.

Control messages, what good for?

" Credentials passing for Unix sockets.

" File descriptor passing for Unix sockets.

" Setting and receiving interface index/TOS/TTL

for IP and IPv6 packets.

" Sending and receiving IP options (alternative to

RAW sockets)

" Sending and receiving IPv6 extension headers.

Credentials passing

" Often local servers want to check the user and

group id of client processes.

" Management using group rights of file system

sockets is clumsy and works only for well defined

restrictions, not for logging.

" Credentials passing gives you the process and

user and group id of the process that sent the

message.

" Relatively portable if well encapsulated.

Credentials passing, HOWTO

" SO_PASSCRED enables sending of credentials.

" For connected SOCK_STREAM sockets: use the

SO_PEERCRED getsockopt.

" For SOCK_DGRAM the senders can send an

SCM_CREDENTIALS control message with the

datagram. It contains pid/uid/gid

" Sender sets its own values, but kernel checks

them. Root can override it. If client sends nothing

the kernel fills in defaults.

File descriptor passing

" Passing file descriptors from one process to

another (»remote dup«)

" Pass a SCM_RIGHTS control message via a

PF_UNIX socket. It contains an fd array.

" Use at least a one byte message to carry it.

" Allows authentication servers for fd resources

" Allows you to avoid threads for more fault

encapsulation.

Netlink

" Message based kernel/user space communication.

" Simple protocol to detect message loss (e.g.

because of out of memory)

" User interface via PF_NETLINK sockets.

" Currently used for routing messages, interface

setup, firewalling, netlink queuing, arpd, ethertap.

Each has its own netlink family.

Netlink messages

" Has a common header with sequence number,

type, flags, length, sender pid.

" Sender can request an ACK or an ECHO for

reliability.

" Multipart messages are used for table dumps.

" Passes back a nlmsgerr message when a problem

occurs.

Sending a netlink message

" Netlink message buffers are set up through

macros from linux/netlink.h

" Find the length of the buffer using

NLMSG_SPACE passing payload length

" Allocate a buffer. Setup nlmsghdr at beginning of

buffer. Nlmsg_length is computed by

NLMSG_LENGTH.

" Get a pointer to payload using NLMSG_DATA

and set it up.

Receiving a netlink message

" Fill a buffer using recvmsg() from a netlink

socket.

" First nlmsghdr is beginning of buffer.

" Check if it is not truncated using NLMSG_OK

" Check the type and it you’ re interested in it get

the payload using NLMSG_DATA. For rtnetlink

don’ t forget the rta attributes.

" Get next message using NLMSG_NEXT

Netlink multicast groups

" sockaddr_nl contains a nl_groups bitmask that

allows 32 multicast groups.

" Groups are specific for the netlink family.

" Only root or the kernel can send to a multicast

group.

" User processes bind to them.

" Useful for listening to updates of some common

resource.

Rtnetlink

" Rtnetlink is used to configure the IP stack.

" Superset of the old ioctl interface.

" Can configure and watch interfaces, routes, IP

addresses, routing rules, neighbours (ARP

entries), queueing disciplines and other stuff.

" Kernel uses it internally (ioctls are turned into

netlink)

" User interface in iproute2

" Some groups: Link, Neighbour, Route, Mroute,

TC

Rtnetlink messages

" Messages start with a standard netlink header

(struct nlmsghdr) and a type specific header.

" They come in NEW, GET, DEL flavours for each

object that can be touched.

" GET can dump all objects in the database or only

matching one.

" Messages carry attributes after the main headers.

" Attributes are like small netlink messages with a

rta_attr header.

A few rtnetlink messages:

" NEW/GET/DEL

" ROUTE: struct rtmsghdr and describes a routing

table entry. Has lots of attributes like

RTA_GATEWAY, RTA_OIF, RTA_IIF etc.

" ADDR: struct ifaddrmsg and describes a local IP

address. Has attributes like IFA_LOCAL (local

IP), IFA_LABEL (alias name), etc.

" See include/linux/rtnetlink.h and rtnetlink(7) for a

lot more messages and the details.

Some rtnetlink applications

" Waiting for interface up and down by binding to

RTMGRP_LINK and watching for link up/down
[when the network driver supports the netif_carrier* interface in 2.4 this allows HA

failover and watching for network problems]

" Maintaining an copy of the routing table.

" Maintaining a table of the local IP addresses.

" ...

Kernel netlink

" Works using skbuffs.

" Sending can be non blocking

(netlink_unicast/broadcast)

" User context calls callback

" netlink_dump calls your callback with a skbuff

for RTM_GET

" netlink_ack acks packets if requested.

Netlink resources

" Man pages: netlink(7), rtnetlink(7)

" libnetlink from iproute2 for higher level interface

and some utility functions

" /usr/include/linux/netlink.h

" /usr/include/linux/rtnetlink.h

" Examples: zebra, bird, iproute2

Error handling

" Networks generate errors (surprise!)

" They are generated locally, by routers on the path

or by the target host.

" Some errors are fatal, others just need action

(retransmit)

" Incoming errors from remote set a pending error

on the socket that caused them and reported on

the next operation on the socket.

" TCP does (nearly) all the work for you

Getting told about UDP errors

" For connected sockets you just get the pending

error.

" For unconnected sockets that talk to multiple

targets it is hard to find out where the error came

from.

" Linux 2.2 added the error queue interface to solve

the problem.

" Error queue is associated with a socket and stores

errors.

" Error queue messages tell you where the error

came from

How to process error messages

" Enable IP_RECVERR on the socket

" Do normal IO (sendmsg, recvmsg, etc.)

" On error do a recvmsg with MSG_ERRQUEUE

and a msg_control buffer.

" Original destination is in msg_name, error

message in a IP_RECVERR control message,

original payload in msg_iov. Process it.

" Do another recvmsg/poll on the socket. If it has

still an error set repeat.

Error queue messages

/* linux/errqueue.h */

struct sock_extended_error {
u_int32_t ee_errno; /* errno */
u_int8_t ee_origin; /* Where it came from; see below */
u_int8_t ee_type; /* ICMP type */
u_int8_t ee_code; /* ICMP code */
u_int32_t ee_info; /* ICMP specific info (gateway or pmtu) */
/* data follows */

};

enum { SOCK_EE_ORIGIN_NONE, SOCK_EE_ORIGIN_ICMP, ... };

struct sockaddr_in *SOCK_EE_OFFENDER(struct sock_extended_err *);

Path MTU discovery

" Path MTU is the biggest packet size that can go

through a internet path without fragmentation

" Fragmentation is bad: slow, increases probability

of packet loss, makes congestion avoidance

harder, too much work for host and router.

" Path MTU is dynamic and changes.

" TCP does the work for you.

" For UDP/RAW the application has to size its

packets correctly

How does PMTUdisc work?

" Sender starts with a reasonable packet size

(interface MTU)

" Sets the Don’ t Fragment bit in the IP header

" When a router would forward to a smaller MTU

he drops it and sends pack a

ICMP_FRAG_NEEDED message.

" Sender receives it.

" Readjusts its idea of the MTU and retransmits if

appropiate.

PMTUdisc in Linux

" 2.2+ kernel automatically keeps track of path

MTUs in a destination cache.

" Can be turned on/off per socket using

IP_PMTU_DISCOVER.

" Can be retrieved using IP_PMTU, but only on

connected sockets.

PMTUdisc: letting the kernel work

" Set IP_PMTU_DISCOVER to

IP_PMTUDISC_WANT

" Connect a socket to destination and use

IP_PMTU to retrieve the PMTU.

" Send packet.

" If EMSGSIZE get new MTU and send again

" Does not support retransmits for async events.

" Kernel keeps state for you.

PMTUdisc: keeping your own state

" Keep a table of destinations with MTU

" Set IP_PMTUDISC_WANT and IP_RECVERR

" Retrieve first MTU

" Send packet

" If EMSGSIZE process error queue.

" Set new MTU ee_data for destination (from

address).

PMTUdisc problems

" PMTU blackholes by misconfigured firewalls that

block ICMP. Check yours!

" Linux missing PMTU blackhole handling.

" PMTUs have to be timed out regularly because of

routing changes.

IPv6 socket basics

" More complicated and bigger sockaddr_in6

(memset 0 it)

" Ports are shared with v4 and stay the same

" IPv4 can be used with the v6 API.

sockaddr_in6

" sin6_family: AF_INET6

" sin6_port

" sin6_flowinfo

" sin6_addr

" sin6_scope_id (not in Linux 2.2)

" Kernel transparently hides a IPv4 address if

needed.

IPv6 search− n− replace

" sockaddr_in − > sockaddr_in6 (if nothing depends

on the size)

" AF/PF_INET − > AF/PF_INET6

" INADDR_ANY − > in6addr_any (+memcpy)

" loopback − > in6addr_loopback

IPv6 name service

" getaddrinfo / freeaddrinfo. Resolves address and

port.

" getnameinfo does reverse resolution.

" inet_pton to print IPv6 addresses

IPv6 references

" http://playground.sun.com/pub/ipng/html

" RFC2133 (Basic API)

" RFC2292 (Extended API)

