Where Is the memory going?
Memory usage In the 2.6 kernel

Sep 2006

Andi Kleen, SUSE Labs
ak@suse.de

Why save memory

[
Weaker reasons

"I've got 1GB of memory.
Why should | care about memory?"

0OId machines
ONot too interesting because they tend to run old software too

OEmbedded

OAlso not too interesting because the kernels are heavily tweaked
OBut perhaps they want to do less tweaking
OlLeave memory for user space

OOne of the better reasons so far.
O After all the user wants to run applications, not kernels

‘Why save memory

Important reasons

OScalability

O Small memory issues often get worse on big systems
>1% of 1GB is 10MB, 1% of 100GB is 100MB, 1% of 1TB is 1GB, ...

O... a percent here and a percent there ...

O Causes problems on NUMA systems

>Some nodes can be nearly filled up by kernel tables
>Bad performance due to imbalances of traffic

OVirtualization

0s390 VMs, Xen, vmware, gemu, ...
OGuests run whole own operating systems

OGuest systems have limited memory

>Limits maximum number of VMs per server
>Shouldn’t or cannot swap guests
>Main memory limits number of guests

0128MB guests are common, 64MB is not unheard of

The most important reason

Smaller is faster!

2Gh
1 cycle ~0.5ns @ Aﬁwlc?n64

Faster 3 cyles ~1.5ns L1 cache cakp Smaller

v
13 cycles ~6.5ns L2 cache 512KB

3
L1/L2TLBs TLB hit 3ns
@ miss 300-500ns 4MB

i
PCI bridges

Northbridge

memory
200 cycles ~100ns DIMM 1GB
\/
\/
Slower disk Larger
~28000k cycles ~14ms 250GB

Test setup

[Ux86-64 Intel Core2 machine with 1GB RAM
Ulintegrated graphics (8MB frame buffer)

URunning 2.6.18rc4 kernel with some patches for memory
measurement

O"Fat" configuration based on defconfig

Measuring kernel memory: dmesg

BIOS 10.05MB (0.98% of total), 980.3MB (95,7%) left after early bot

> dmesg

i?:IOS-provided physical RAM map:

BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:

0000000000000000 - 000000000009fc00 (usable)
000000000009fc00 - 00000000000a0000 (reserved)
00000000000e0000 - 0000000000100000 (reserved)
0000000000100000 - 000000003f5bfO00 (usable)
000000003f5bf000 - 000000003f5¢cc000 (reserved)
000000003f5cc000 - 000000003f652000 (usable)
000000003f652000 - 000000003f6eb000 (ACPI NVS)
000000003f6eb000 - 000000003f6ef000 (usable)
000000003f6ef000 - 000000003f6ffO00 (ACPI data)
000000003f6ff000 - 000000003f700000 (usable)
000000003f700000 - 0000000040000000 (reserved)
00000000ffe00000 - 0000000100000000 (reserved)

6n node O totalpages: 251483

DMA zone:

1415 pages, LIFO batch:0

DMA32 zone: 250068 pages, LIFO batch:31

Memory: 1003884k/1039360k available (3384k kernel code, 34360k reserved, 2355k data, 220Kk init)

Measuring kernel code size

6.3MB (6.1%)
Generic x86-64 "defconfig+" kernel 2.6.18-rc4 (+ minor patches)

> cd /usr/src/linux
> size vmlinux
text data bss dec hex filename
4791288 1185948 626328 6603564 64c32c¢c vmlinux

Why caring only about code size is bad

L
Dynamic allocators rule the memory

OOften discussions on kernel bloat focus on code size only

OEasy to measure with "size vmlinux"

OHistorically trend upwards
> Actually 2.6 text sizes recently came down
OEmbedded users with flash have some point

>But for everybody else it is small
>Percentage larger with small VM guest, but still small

06.1% with "fat" kernel
ULots of patches to make kernel text smaller

OUsually by putting in lots of ifdefs
OOr disabling valuable debugging code that should be enabled by default

HOEven with zero byte kernel code you only save 6.1%!
ODynamic memory is much more important!

Linux memory users

dcache icache cca)g;fers kmalloc | Not complete
v /v
Kern eI/Use/ Kernelstacks
Slab Network

Pa/getables Userspace Files
Buffer

struct Big

Page allocator page Hash

ol ol

Bootmem

Firmware

Some allocators

UBootmem / Early allocator / Firmware
OUsed early in system boot
0~43.7MB (~4.26%) lost on test system
OSee paper for details

LPage allocator
OMain allocator that feeds everybody else

ODeals in orders of pages (4K on x86)
OBuddy algorithm

> All allocations aligned in address/size
O> Order 0 has fragmentation problems after longer uptime.

HOSee paper for more allocators

Kernel users

"A megabyte here and a megabyte there and soon we’re talking real memory."

Omem_map / struct page array(s)
OOne entry for each page in the system
01.37% of kernel memory on x86-64 (14.3MB)
Ostruct page already quite optimized (32/64bytes)

OCan be a big problem on large memory 32bit systems

>But 64bit is fine
>Sometimes memory holes can be wasteful
>NUMA/sparsemem can be more efficient with holes

HPage tables
OTells the CPU’s MMU about the virtual memory
O~8+ bytes per page, ~0.2% of each user mapping
OSLES10 GNOME-+firefox after boot ~5.3MB
OShared page tables/large pages might help

> Automatic large pages would need large VM changes

Kernel users |l

UKernel stacks
O8K for each thread in the system (~1MB on test system)
OCan fail when page allocator is fragmented (order 1)
O0n i386 4K stack option, but dangerous

LPage cache

OTakes all that kernel leaves over
OFile cache

OFS metadata

OUser anonymous memory

Mempools

OReserve memory to avoid deadlocks under memory pressure
>When you need more memory to free memory

0~480k (0.04%) on test system

>Can be much larger on bigger systems
>Scales with number of block devices etc.

OWork underway that might allow to eliminate them

[The slab allocator

UMain kernel object allocator
OMemory from page allocator

OManages "slab caches" of fixed-size objects
>Large objects have meta data
OCan be often majority of kernel memory

OPerformance critical
>e.g. for networking but many other subsystems too

OMany features

>NUMA aware
>per CPU caches
>cache coloring

Has object caches that are only freed on demand
OlIntended for "constructed" objects, but nobody uses that

‘Measuring slab: slabtop

> slabtop
Active / Total Objects (% used)

Active / Total Slabs (% used)

: 85349 / 88654 (96.3%)

: 12340/ 12340 (100.0%)

Active / Total Caches (% used)

Active / Total Size (% used)

£ 94 / 136 (69.1%)

: 40022.52K / 40466.88K (98.9%)
Minimum / Average / Maximum Object : 0.02K / 0.46K / 128.00K

OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME

20560
12534
9720
5424
5258
3815
3548
3304
2800
2410
2065
1740
1672
1605
1395

20560 100%
12528 99%

9573
5399
5116
3802
3540
3205
2772
2295
2011
1737
1639
1598

1395 100%

98%
99%
97%
99%
99%
97%
99%
95%
97%
99%
98%
99%

0.24K 1285
1.35K 6267

0.09K
0.08K
0.17K
0.52K
0.99K
0.06K
0.03K
0.38K
0.06K
0.12K
0.50K
0.25K

0.25K

243
113
239
545
887
56
25
241
35
58
209
107
93

40
48
22
7
4
59
112
10
59
30
8
15
15

5140K dentry_cache
25068K ext3_inode_cache
972K buffer_head
452K sysfs_dir_cache
956K vm_area_struct
2180K radix_tree_node
3548K inode_cache
224K size-64
100K size-32
964K filp
140K anon_vma
232K size-128
836K size-512
428K size-256
372K skbuff head cache

More on slab allocator

Ukmalloc sits on top and uses power-of-two caches
O032bytes ... 128K

CProblems

OVery complicated code now

OUnused caches can use a lot of memory
OPower of two kmalloc slabs often not good fit
OFreeing not directed at freeing pages

ORewrite under way now

Interactions

"Free memory is bad memory." - Linus.

OCaches

OFill memory

OShrink only on demand

OFree memory isn’'t something to look out for
OJust needs to be freed when needed

OKernel objects are fixed in memory
OCannot be moved, just freed

OFragmentation
OSome objects are "pinned”, others cache that could be freed

OFragmentation

OMultiple objects in a 4K page

OSingle object can prevent whole page from being freed
OEven when object is only cache

OFreers usually have own lists, don’t look at complete pages

The dentry/inode caches

Hdentry cache ("dcache") stores directory entries ("names") in
memory

Odentry is primary "handle" for file in kernel
Ofairly large (~200bytes) + file name for names > 36
Ulnode cache ("icache") stores inodes in memory

ULinux caches dentries aggressively to give good user experience
OOnly freed on memory pressure
OUsing a LRU list

OMost dentries have a inode object too

OBut separate in memory
OMuch larger (~770bytes)
Oinode cache slave of dcache
OBut separate LRU caches

“dcache/icache fragmentation

Pages (4K)

| Hash tables |

> dmesg | grep -i hash

PID hash table entries: 4096 (order: 12, 32768 bytes)

Dentry cache hash table entries: 131072 (order: 8, 1048576 bytes)
Inode-cache hash table entries: 65536 (order: 7, 524288 bytes)
Mount-cache hash table entries: 256

IP route cache hash table entries: 32768 (order: 6, 262144 bytes)
TCP established hash table entries: 65536 (order: 9, 3670016 bytes)
TCP bind hash table entries: 32768 (order: 8, 1835008 bytes)

TCP: Hash tables configured (established 65536 bind 32768)

| Hash tables Il

L4.78MB or 0.46%.

ONearly as much as kernel .text!
OHash tables sized based on memory size

OLarge to make them effectively O(1)
>But you get the cache misses!
OHeuristics not very good

OHashes sized for worst case workloads

OCan be tweaked on command line
>dhash_entries=,ihash_entries=,thash_entries=,rhash_entries=

OPlease benchmark and send feedback!
OPossible solutions:

ODynamic hash table growth/shrink
> ocking tricky
OBetter data structures

>Various tree variants are looking promising
>Trees have better cache performance
>But not O(1) in theory

Summary

UThese were just generic examples

0OnN other workloads kernel users can be quite different
OBut easy to measure

ONo easy solution

OBut the way to a leaner and faster kernel is to fix inefficient data
structures

HOHave to work through them one by one

ONeeds more work

‘Wake up! Presentation over.

Paper: http://www.firstfloor.org.org/~andi/memorywaste.pdf

Presentation: http://www. firstfloor.org/~andi/memory.pdf
Or in paper proceedings

Questions?

Thank you!

Backup

‘Measuring kernel memory: /proc/meminfo

MemTotal: 1004104 kB
MemFree: 578576 kB

Buffers: 16436 kB
Cached: 249040 kB
SwapCached: 0 kB
Active: 166312 kB

Inactive: 186184 kB

LowTotal: 1004104 kB
LowFree: 578576 kB
SwapTotal: 530104 kB
SwapFree: 530104 kB
Dirty: 2248 kB
Writeback: 0 kB
AnonPages: 86940 kB
Mapped: 37172 kB
Slab: 50008 kB
PageTables: 4932 kB

CommitLimit: 1032156 kB
Committed_AS: 194788 kB

