Machine check handling on Linux

http://www.firstfloor.org/~andi/mce.pdf

Andi Kleen, SuSE Labs ak@suse.de

What is a machine check?

○Hardware error

OHardware is error correcting (ECC), but fails sometimes

OInternal errors, Memory, Cache, IO, Busses

°Can be an exception or "silent"

○IO errors can be caused by software (but usually not on PCs)

ONMI, Thermal

Why do we care?

With bigger systems they become more common (64bit, clusters)

•With more transistors they will become more common

OKernel developers and supporters need to know.

○Useful to diagnose hardware

OMay predict failures early ("SMART for your memory")

○Some can be handled better than just panicing.

○Error reporting is even good for desktops

A live example (2.4)

kernel: Northbridge Machine Check exception = b60ea00100000813 0 ecc error link number 0 err cpu1 uncorrected ecc error processor context corrupt error address valid error enable error uncorrected previous error lost error address 0000001826ac018 Address: 0000001826ac018 CPU 1: Machine Check Exception: 00000000000000 Kernel panic: Unable to continue

Why is it hard to handle them?

○Asynchronous - error happens later

OImprecise - doesn't report correct

○Ignore kernel locking

ONeeds to be handled quickly and with minimum infrastructure

 $\odot \text{Hard}$ to test

History (PC centric)

 IBM PC had parity memory and caused NMI (Non Maskable Interrupt)

○Ignored IO errors (still a problem)

• Earlier x86 CPUs like Pentium 5 had simple machine check setups

○PPro added Intel generic machine check architecture

○Logged by BIOS in "server class" hardware

○First machine check handler for Linux/i386 by Alan Cox

OCurrently split into different drivers

02.4 x86-64 handler with Opteron specific code

x86 machine check architecture

• Standard exception (18)

OStandard registers (MSRs): address, status, misc

OBanks with sub errors and own status (e.g. CPU, cache, bus, northbridge)

○Some generic bits, but interpretation CPU specific

○Silent errors - need a timer

Not integrated
Thermal (using APIC vector)
NMI for IO errors (optional)

User interfacing issues

○Looks like a software failure

OUsers report it as software failure

ONeed to separate them because they're an different issue

○But software people still want to know

○Separate Log

• Disk logging after reset (NFI)

Old code issues

 $^{\odot}\text{Can}$ deadlock in printk

 $\odot \mbox{Would}$ panic more often than needed

OAlways in standard kernel log, often lost

○BIOS logging hard to manage

x86-64 2.6 rewrite

Oclosely follows Intel/AMD recommendations

○Single driver for all CPUs.

OLockless racefree logging infrastructure

○Logs binary log items

○Logs left over errors

 $\odot \mbox{Tries}$ to avoid panic, kills process

○Runtime configurable

User interface of the new code

OCronjob runs meelog to decode /dev/meelog

O/sys/devices/system/machinecheck/machinecheck0/*

tolerance level:
0 always panic
1 panic if deadlock
2 try to avoid deadlock

obankNctl

ocheck_interval

○oops=panic, panic=timeout

Future work: Handling RAM errors properly

○Use address to look up failed page using rmap

- ODirty/Kernel page: kill, Clean: reload, Free: ignore
- ONeeds to synchronize context
- OWorks better with imprecise errors
- OMay involve application using signals

Future work: IO error handling

OEnable NMI in chipset to report PCI level errors

OAsynchronous delayed reporting makes it hard

Reliability
 Disable broken devices to prevent further damage

○Better IO errors
 □ Driver debugging

OAlready works on non PC platforms to some extent (HP zX, IBM PPC, ...)

○Callback or checking IO operations

○NMI sources are not well defined

○Would need an IOMMU to be really good

More work to do

 $\odot Simple \ NMI$ handling

OThermal for x86-64

○Port it to 32bit x86

 $\odot \mathsf{Expand}\xspace$ more to decode more

http://www.firstfloor.org/~andi/mce.pdf

ftp://ftp.x86-64.org/pub/linux/tools/mcelog/

http://www.kernel.org