
Machine check handling on Linux

http://www.firstfloor.org/~andi/mce.pdf

Andi Kleen, SuSE Labs
ak@suse.de

 What is a machine check?

 Hardware error

 Hardware is error correcting (ECC), but fails sometimes

 Internal errors, Memory, Cache, IO, Busses

 Can be an exception or "silent"

 IO errors can be caused by software (but usually not on PCs)

 NMI, Thermal

 Why do we care?

 With bigger systems they become more common (64bit,
clusters)

 With more transistors they will become more common

 Kernel developers and supporters need to know.

 Useful to diagnose hardware

 May predict failures early ("SMART for your memory")

 Some can be handled better than just panicing.

 Error reporting is even good for desktops

 A live example (2.4)

 kernel: Northbridge Machine Check exception = b60ea00100000813 0
 ecc error
 link number 0
 err cpu1
 uncorrected ecc error
 processor context corrupt
 error address valid
 error enable
 error uncorrected
 previous error lost
 error address 00000001826ac018
 Address: 00000001826ac018
 CPU 1: Machine Check Exception: 0000000000000000
 Kernel panic: Unable to continue

 Why is it hard to handle them?

 Asynchronous - error happens later

 Imprecise - doesn’t report correct

 Ignore kernel locking

 Needs to be handled quickly and with minimum infrastructure

 Hard to test

 History (PC centric)

 IBM PC had parity memory and caused NMI (Non Maskable
Interrupt)

 Ignored IO errors (still a problem)

 Earlier x86 CPUs like Pentium 5 had simple machine check setups

 PPro added Intel generic machine check architecture

 Logged by BIOS in "server class" hardware

 First machine check handler for Linux/i386 by Alan Cox

 Currently split into different drivers	

 2.4 x86-64 handler with Opteron specific code

 x86 machine check architecture

 Standard exception (18)

 Standard registers (MSRs): address, status, misc

 Banks with sub errors and own status (e.g. CPU, cache, bus, northbridge)

 Some generic bits, but interpretation CPU specific

 Silent errors - need a timer

 Not integrated
 Thermal (using APIC vector)
 NMI for IO errors (optional)

 User interfacing issues

 Looks like a software failure

 Users report it as software failure

 Need to separate them because they’re an different issue

 But software people still want to know

 Separate Log

 Disk logging after reset (NFI)

 Old code issues

 Can deadlock in printk

 Would panic more often than needed

 Always in standard kernel log, often lost

 BIOS logging hard to manage

 x86-64 2.6 rewrite

 Closely follows Intel/AMD recommendations

 Single driver for all CPUs.

 Lockless racefree logging infrastructure

 Logs binary log items

 Logs left over errors

 Tries to avoid panic, kills process

 Runtime configurable

 User interface of the new code

 Cronjob runs mcelog to decode /dev/mcelog

 /sys/devices/system/machinecheck/machinecheck0/*

 tolerance level:
 0 always panic
 1 panic if deadlock
 2 try to avoid deadlock

 bankNctl

 check_interval

 oops=panic, panic=timeout

 Future work: Handling RAM errors properly

 Use address to look up failed page using rmap

 Dirty/Kernel page: kill, Clean: reload, Free: ignore

 Needs to synchronize context

 Works better with imprecise errors

 May involve application using signals

 Future work: IO error handling

 Enable NMI in chipset to report PCI level errors

 Asynchronous delayed reporting makes it hard

 Reliability
 Disable broken devices to prevent further damage

 Better IO errors
 Driver debugging

 Already works on non PC platforms to some extent (HP zX, IBM PPC, ...)

 Callback or checking IO operations

 NMI sources are not well defined

 Would need an IOMMU to be really good

 More work to do

 Simple NMI handling

 Thermal for x86-64

 Port it to 32bit x86

 Expand mcelog to decode more

 URLs

 http://www.firstfloor.org/~andi/mce.pdf

 ftp://ftp.x86-64.org/pub/linux/tools/mcelog/

 http://www.kernel.org

