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What's a good error?

•User has to see it, of course
– That can be surprisingly difficult
– Also psychological barriers (“users don't read errors”)

•High level classification
– Software error versus hardware error
– Don't want a hardware error reported as a kernel bug
– Still have low level details for experts (ideally separated)

•Identify affected component
– Do not require low level knowledge to process
– Works out of the box

•How serious is the error?
– Do not upset the user unnecessarily

•
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Error sources

•Machine checks from the CPU

•NMI

•PCI-Express Advanced Error Handling (AER)

•Chipset

•ACPI4 (APEI)

•Drivers
– SATA errors
– Ethernet
– ...

•Presentation only covers machine check errors from the CPU
– This includes memory on modern systems
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What is a machine check?

•Machine check is a hardware error reported by the CPU
– Not a software problem!

•Hardware corrects most problems, but sometimes it can fail
– Memory, Interconnect, Cache, Internal errors

•Uncorrected errors raise exceptions (“MCEs”)
– Better to stop than to continue with corrupted data
– Otherwise the corrupted data could hit disk or give wrong results
– If you aren't sure where it is, stop the machine ...

•Corrected errors are reported in the background
– Either using a poll handler or with interrupts (“CMCI”)
– Didn't cause corruption (yet)
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Why are machine checks important?

•They report memory errors on modern systems
– Memory error rate scaling roughly with memory sizes
– Memory sizes are increasing quickly

– More cores need more memory
– Virtualization needs a lot of memory

– This also means more memory errors
– So good error handling is important

•On large clusters, errors are common
• What's uncommon on a single system
• … becomes common when you have a hundred of them
• … and even very rare events become common on thousands of systems

•In general, good error diagnosis is useful
– If you ever searched manually for a bad DIMM …
– Saves time and hassle
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MCE errors in practice today

•Error flows for uncorrected and corrected errors

•Assuming 64 bit or 2.6.31+ with CONFIG_X86_NEW_MCE

•Mcelog has to be installed

•Some of these flows are still somewhat clumsy
– The future will be brighter, hopefully
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Classic unrecoverable MCE error today
•System detects uncorrected error

– Requires ECC for memory
– Machine check exception happens

•Machine check handler collects error and prints it out
– CPU x: Machine check exception ...

•System panics on unrecoverable error
– On auto reboot (panic=30) can be logged after reboot on many systems

– Available then decoded in /var/log/mcelog some time after boot
– Trap: doesn't work with double reboot or with power switch

– You will see the panic on the console (not in X) or on serial/netconsole
– If you don't have auto reboot a logging console is very useful
– Console output can be run through mcelog –-ascii to decode

•Analyze error, based on decoded output
– For example, map to DIMM (“Memory DIMM ID of error: ...”)
– If common, take corrective action
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Corrected error flow today
•A data bit flips

– Hardware detects error, using checksum, and corrects it and reports event

•CMCI interrupt happens or poll timer picks it up
– Kernel logs it to internal buffer accessible through /dev/mcelog

• Note this buffer can overflow

•Mcelog picks it up
– Either as cronjob or in daemon mode or as trigger

– In cronjob mode up to 10 minutes delay, worst case with polling

– Mcelog decodes
– Logged in /var/log/mcelog or syslog

•Analysis of the log entry
– Identify component
– Take corrective action if common
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Low level MCE handler improvements

•General overhaul after comprehensive audit
– A lot of small improvements, too many to list

•Monarch support: synchronization over all CPUs
– Collect errors from all CPUs
– Synchronize all CPUs
– Process the most serious error first to avoid data corruption

– When the hardware didn't contain the error shut down

•Bank sharing
– Handle shared machine check banks correctly

•Corrected Machine Check Interrupt Support (“CMCI”)

•Injector support for testing and a comprehensive test suite
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MCA recovery

•New CPU feature in upcoming Nehalem-EX CPU

•Recovery from some memory uncorrected errors
– For example, Patrol scrub memory error in the background
– Required a lot of changes in the MCE handler to do reliable
– When recovering it's much more important to handle all corner cases

•OS finds out what the corrupted page does 
– And attempts to get rid of it

•Machine check architecture has new status bits for recovery
– Signalled, Action-Required
– Different types of errors: Action-Optional, Action-Required, UCNA, 

Corrected
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HWPoison handling in the VM

•VM finds out who owns a page and stops using it
• Pages with copy on disk can be just dropped
• Or application is killed, if data has no copy
• IO error for dirty file cache pages
• Free pages will be ignored on allocation

•Difficult because error can come in at any time
• Can disrupt normal page livecycle
• Error code has to be very careful
• Also testing is difficult

•Put page on bad page list and never reuse it again

•Page table entry of any mappings is poisoned

•Early kill versus late kill mode
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Virtualization

•Virtualization requires a lot of memory 

•Many eggs in a single basket (“servers on a single machine”)

•Error handling and error containment is important
– If there's a problem only kill single guest, not all

•KVM guests act like processes
– So uses the per process infrastructure in standard hwpoison

•Uncorrected recoverable errors can be forwarded to a guest
– Guest can inject the error as machine check (or KVM kills)
– Guest with MCA recovery support can recover (or panic)

•Similar code developed for Xen
– No forwarding for Xen currently
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Memory error application interface

•Applications can catch memory errors, which are signals
– Was needed for KVM, but can be used by others too

•Applications have often cache, which they can drop

•Expect only a few specialized applications to use it

•SIGBUS with an address can be caught
• BUS_MCEERR_AO  Action-Optional error in process

– Get rid of page specified by si_addr, si_addr_lsb
– Take out of free list or similar

• BUS_MCEERR_AR  Action-Required error in current execution context
– Need to abort right now (siglongjmp etc.)

•Prctl to set early kill vs late kill for the process
– Late kill is typically better for error aware applications
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Mcelog

•User space backend that decodes and processes MCE errors
– Also identifies components with some firmware help

•Traditionally on 64 bit x86, now on 32 bit too

•Traditionally cronjob every 5 minutes, future daemon
– Daemon mode allows to keep state about errors in memory with query 

interface and triggers
– Some old attempts using an on-disk database proved difficult

•Can run shell scripts on specific events (“triggers”)
– Notify administrator, offline component, ...

•Long term goal: high level errors in syslog
– Some steps into this direction
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Mcelog error flow
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Error accounting
•Possible in mcelog daemon mode

•Often most interesting is which component the error affects
– DIMM, memory, PCI card, etc.
– To see trends and replace the right component quickly if needed

•Individual errors are often not that interesting
– Errors often come in bursts and individual errors in a burst are not 

interesting
– Large clusters can generate a lot of data, which is difficult to process

•Mcelog moving towards accounting errors per component
– Only reports “n errors in last x hours on component k”
– Triggers when thresholds are exceeded
– Discovers component names with firmware help
– Can disable individual error logging for less data
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Open issues

•Crashdump handling

•More testing is always useful
– Stress test suite under way
– Any contributions welcome

•Better error reporting in general
– More high level errors better presented

•More error sources in mcelog

•Intelligent error handling in mcelog
– If you have ideas, feel free to contact me
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Resources

•http://halobates.de/mce.pdf
– Old paper about Linux machine checks

•Intel Software Developer's Manual: 3A/B System Programming Guide
– Description of the x86 Machine check architecture

•git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6
– MCE development tree (hwpoison, mce4)

•git://git.kernel.org/pub/scm/utils/cpu/mcelog.git
– Mcelog development repository

•ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/
– Mcelog releases

•git://git.kernel.org/pub/scm/utils/cpu/mce-test.git
– MCE test suite (or now part of LTP to (http://ltp.sourceforge.net)

•git://git.kernel.org/pub/scm/utils/cpu/mce-inject.git
– MCE injector

http://halobates.de/mce.pdf
ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/
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Backup
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Mcelog versus EDAC

•EDAC old style driver for chipset memory controllers
– Exposes a lot of low level details
– New model: memory controller in CPU
– Memory errors integrated with machine checks
– Handled by standard MCE subsystem

•EDAC needs driver for each platform
– And often accesses “non stable” registers that could change even with 

steppings
– Mcelog uses standardized interfaces

•No integration with software
– Requires special configuration for each board to identify components

•Cannot do a lot of things that user space (mcelog) can do
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Testing

•Testing machine checks is difficult
– Normal operation doesn't have enough errors
– So standard Linux community testing model doesn't work very
– Needs special injection support and test suites

•Various injectors on software level (without hardware support)
– Low level machine check injector
– Page error injector for process and for arbitrary page

•New injectors, test suite mce-test for testing MCEs
– Testing low level handler with mce-inject
– Testing hwpoison VM code in process context

– Bring pages into specific states and test to see if they can be poisoned

•Ongoing work to get the best test coverage
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