
Ongoing evolution of
Linux x86 machine check handling

Sept. 2009

Andi Kleen

LinuxCon 2009

2

What's a good error?

•User has to see it, of course
– That can be surprisingly difficult
– Also psychological barriers (“users don't read errors”)

•High level classification
– Software error versus hardware error
– Don't want a hardware error reported as a kernel bug
– Still have low level details for experts (ideally separated)

•Identify affected component
– Do not require low level knowledge to process
– Works out of the box

•How serious is the error?
– Do not upset the user unnecessarily

•

3

Error sources

•Machine checks from the CPU

•NMI

•PCI-Express Advanced Error Handling (AER)

•Chipset

•ACPI4 (APEI)

•Drivers
– SATA errors
– Ethernet
– ...

•Presentation only covers machine check errors from the CPU
– This includes memory on modern systems

4

What is a machine check?

•Machine check is a hardware error reported by the CPU
– Not a software problem!

•Hardware corrects most problems, but sometimes it can fail
– Memory, Interconnect, Cache, Internal errors

•Uncorrected errors raise exceptions (“MCEs”)
– Better to stop than to continue with corrupted data
– Otherwise the corrupted data could hit disk or give wrong results
– If you aren't sure where it is, stop the machine ...

•Corrected errors are reported in the background
– Either using a poll handler or with interrupts (“CMCI”)
– Didn't cause corruption (yet)

5

Why are machine checks important?

•They report memory errors on modern systems
– Memory error rate scaling roughly with memory sizes
– Memory sizes are increasing quickly

– More cores need more memory
– Virtualization needs a lot of memory

– This also means more memory errors
– So good error handling is important

•On large clusters, errors are common
• What's uncommon on a single system
• … becomes common when you have a hundred of them
• … and even very rare events become common on thousands of systems

•In general, good error diagnosis is useful
– If you ever searched manually for a bad DIMM …
– Saves time and hassle

6

MCE errors in practice today

•Error flows for uncorrected and corrected errors

•Assuming 64 bit or 2.6.31+ with CONFIG_X86_NEW_MCE

•Mcelog has to be installed

•Some of these flows are still somewhat clumsy
– The future will be brighter, hopefully

7

Classic unrecoverable MCE error today
•System detects uncorrected error

– Requires ECC for memory
– Machine check exception happens

•Machine check handler collects error and prints it out
– CPU x: Machine check exception ...

•System panics on unrecoverable error
– On auto reboot (panic=30) can be logged after reboot on many systems

– Available then decoded in /var/log/mcelog some time after boot
– Trap: doesn't work with double reboot or with power switch

– You will see the panic on the console (not in X) or on serial/netconsole
– If you don't have auto reboot a logging console is very useful
– Console output can be run through mcelog –-ascii to decode

•Analyze error, based on decoded output
– For example, map to DIMM (“Memory DIMM ID of error: ...”)
– If common, take corrective action

8

Corrected error flow today
•A data bit flips

– Hardware detects error, using checksum, and corrects it and reports event

•CMCI interrupt happens or poll timer picks it up
– Kernel logs it to internal buffer accessible through /dev/mcelog

• Note this buffer can overflow

•Mcelog picks it up
– Either as cronjob or in daemon mode or as trigger

– In cronjob mode up to 10 minutes delay, worst case with polling

– Mcelog decodes
– Logged in /var/log/mcelog or syslog

•Analysis of the log entry
– Identify component
– Take corrective action if common

9

Low level MCE handler improvements

•General overhaul after comprehensive audit
– A lot of small improvements, too many to list

•Monarch support: synchronization over all CPUs
– Collect errors from all CPUs
– Synchronize all CPUs
– Process the most serious error first to avoid data corruption

– When the hardware didn't contain the error shut down

•Bank sharing
– Handle shared machine check banks correctly

•Corrected Machine Check Interrupt Support (“CMCI”)

•Injector support for testing and a comprehensive test suite

10

MCA recovery

•New CPU feature in upcoming Nehalem-EX CPU

•Recovery from some memory uncorrected errors
– For example, Patrol scrub memory error in the background
– Required a lot of changes in the MCE handler to do reliable
– When recovering it's much more important to handle all corner cases

•OS finds out what the corrupted page does
– And attempts to get rid of it

•Machine check architecture has new status bits for recovery
– Signalled, Action-Required
– Different types of errors: Action-Optional, Action-Required, UCNA,

Corrected

11

HWPoison handling in the VM

•VM finds out who owns a page and stops using it
• Pages with copy on disk can be just dropped
• Or application is killed, if data has no copy
• IO error for dirty file cache pages
• Free pages will be ignored on allocation

•Difficult because error can come in at any time
• Can disrupt normal page livecycle
• Error code has to be very careful
• Also testing is difficult

•Put page on bad page list and never reuse it again

•Page table entry of any mappings is poisoned

•Early kill versus late kill mode

12

Virtualization

•Virtualization requires a lot of memory

•Many eggs in a single basket (“servers on a single machine”)

•Error handling and error containment is important
– If there's a problem only kill single guest, not all

•KVM guests act like processes
– So uses the per process infrastructure in standard hwpoison

•Uncorrected recoverable errors can be forwarded to a guest
– Guest can inject the error as machine check (or KVM kills)
– Guest with MCA recovery support can recover (or panic)

•Similar code developed for Xen
– No forwarding for Xen currently

13

Memory error application interface

•Applications can catch memory errors, which are signals
– Was needed for KVM, but can be used by others too

•Applications have often cache, which they can drop

•Expect only a few specialized applications to use it

•SIGBUS with an address can be caught
• BUS_MCEERR_AO Action-Optional error in process

– Get rid of page specified by si_addr, si_addr_lsb
– Take out of free list or similar

• BUS_MCEERR_AR Action-Required error in current execution context
– Need to abort right now (siglongjmp etc.)

•Prctl to set early kill vs late kill for the process
– Late kill is typically better for error aware applications

14

Mcelog

•User space backend that decodes and processes MCE errors
– Also identifies components with some firmware help

•Traditionally on 64 bit x86, now on 32 bit too

•Traditionally cronjob every 5 minutes, future daemon
– Daemon mode allows to keep state about errors in memory with query

interface and triggers
– Some old attempts using an on-disk database proved difficult

•Can run shell scripts on specific events (“triggers”)
– Notify administrator, offline component, ...

•Long term goal: high level errors in syslog
– Some steps into this direction

15

Mcelog error flow

16

Error accounting
•Possible in mcelog daemon mode

•Often most interesting is which component the error affects
– DIMM, memory, PCI card, etc.
– To see trends and replace the right component quickly if needed

•Individual errors are often not that interesting
– Errors often come in bursts and individual errors in a burst are not

interesting
– Large clusters can generate a lot of data, which is difficult to process

•Mcelog moving towards accounting errors per component
– Only reports “n errors in last x hours on component k”
– Triggers when thresholds are exceeded
– Discovers component names with firmware help
– Can disable individual error logging for less data

17

Open issues

•Crashdump handling

•More testing is always useful
– Stress test suite under way
– Any contributions welcome

•Better error reporting in general
– More high level errors better presented

•More error sources in mcelog

•Intelligent error handling in mcelog
– If you have ideas, feel free to contact me

18

Resources

•http://halobates.de/mce.pdf
– Old paper about Linux machine checks

•Intel Software Developer's Manual: 3A/B System Programming Guide
– Description of the x86 Machine check architecture

•git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6
– MCE development tree (hwpoison, mce4)

•git://git.kernel.org/pub/scm/utils/cpu/mcelog.git
– Mcelog development repository

•ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/
– Mcelog releases

•git://git.kernel.org/pub/scm/utils/cpu/mce-test.git
– MCE test suite (or now part of LTP to (http://ltp.sourceforge.net)

•git://git.kernel.org/pub/scm/utils/cpu/mce-inject.git
– MCE injector

http://halobates.de/mce.pdf
ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/

19

Backup

20

Mcelog versus EDAC

•EDAC old style driver for chipset memory controllers
– Exposes a lot of low level details
– New model: memory controller in CPU
– Memory errors integrated with machine checks
– Handled by standard MCE subsystem

•EDAC needs driver for each platform
– And often accesses “non stable” registers that could change even with

steppings
– Mcelog uses standardized interfaces

•No integration with software
– Requires special configuration for each board to identify components

•Cannot do a lot of things that user space (mcelog) can do

21

Testing

•Testing machine checks is difficult
– Normal operation doesn't have enough errors
– So standard Linux community testing model doesn't work very
– Needs special injection support and test suites

•Various injectors on software level (without hardware support)
– Low level machine check injector
– Page error injector for process and for arbitrary page

•New injectors, test suite mce-test for testing MCEs
– Testing low level handler with mce-inject
– Testing hwpoison VM code in process context

– Bring pages into specific states and test to see if they can be poisoned

•Ongoing work to get the best test coverage

22

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at
any time, without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights are protected.

23

	title
	Slide 2
	Slide 3
	slde 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

