
Experiences of a x86 maintainer

Feb 2009

Andi Kleen, Intel Open Source Technology Center
andi@firstfloor.org

 Disclaimer

 This happened all before I joined Intel

 Not an Intel project

 Not speaking for Intel

 What is a Linux maintainer?

 Patch collector
 Release manager for a subsystem
 Architect
 Default blamee
 Politician
 Sends patches for a subsystem to Linus
 But not absolute control over code
 Linus and some other people can overrule

 Sometimes hard to not merge patches

 More on maintainers

 On a larger project spending a lot of time on administrativa

 And code review

 Not that much time to code anymore
 For large subsystems

 For complex projects also has to sub-delegate some areas
 Become a middle manager

 Code review

 ... is hard work

 required to keep linux coding standards up

 Normally would like to have reviewers on mailing lists do it

 Often the maintainer has to do the bulk of it in the end
 Iterates until code is acceptable

 Takes a lot of time

 Code reviewing on mailing list is an important contribution!

 x86 maintenance

 Originally just worked on x86-64

 Project started with no clear kernel maintainer
 Just a group of engineers

 Maintainer needed as interface to the outside world

 x86-64 kernel maintainer
 but also x86-64 gcc/glibc/gdb/... maintainers

 Became defacto i386 maintainer too

 Release trees

 Old
 2.4 tree main work

 unstable 2.5 tree completely different

 some distribution trees with lots of backports

 New
 2.6.x vs 2.6.x+1

 Distribution trees

 3 month cycles

 Phases of the project

 From novelty to commodity
 Complexity rising significantly
 Not as much in the code

 But in the platforms that need to work

 Interaction with other subsystems takes more and more time
 Farmed out some work
 For example ACPI took over a lot of BIOS issues

 From single platform to (nearly) everywhere

 First implementation on simulator
 Then long time hiatus

 Then single hardware platform
 Then multiple platforms
 Then mass market with many more platforms
 Today (nearly) everywhere in PC space

 How it started

 Initially mostly removing code from a copy of arch/i386
 Goal was to get rid of old hardware workarounds

 To get a cleaner and more manageable software

 Implemented 64bit support
 done by a team

 Various code areas redesigned

 Then was alone on the kernel side for over a year
 Simulator only

 Especially 2.5 was tough

 Headaches

 New chipsets
 Many new chipsets have one quirk or another

 Especially those from smaller vendors

 BIOS
 If Windows doesn’t use it ...

 Servers are better than clients

 The cheaper the system the worse the BIOS
 But even expensive systems often have bad bugs

 A lot of BIOS workarounds

 Luckily significant part of it was handled by ACPI team
 But still a lot of of non ACPI BIOS issues

 32bit x86 maintenance

 i386 didn’t have a dedicated maintainer
 resulted in some substandard code being merged

 Did i386 maintenance on the side
 Primary focus was still on 64bit

 Plan to add 32bit support to 64bit
 Get cleaner codebase

 Never happened due to time constraints

 Compat layer	

 Allows to run 32bit x86 software under 64bit kernel
 In theory everything free can be recompiled...
 but in practice it’s often not as easy

 Based on sparc compat layer
 Not auto generated

 98%+ compatible
 Wine was an interesting experience
 First Solitaire

 More compatible than the original

 Learned a lot of corner cases

 Compat layer problems

 The kernel compat layer is quite good
 But relies on distributions shipping shared 32bit libraries
 Didn’t spend enough effort educating

 Some popular distributions don’t ship 32bit compat libraries
 Large adoption hurdle for 64bit today

 Bug management

 ... Still remember the day when I realized I couldn’t keep track of
all bugs anymore

 Originally just bug list in a text file
 Then later handled by various people
 Was difficult to track regressions

 and determine release readiness

 Some bugs later handled in bugzilla
 Most Linux subsystems still do it informally

 ACPI is the main exception

 Also emergence of central bug masters

 Bug management is important

 Last thoughts

 It’s very motivating when your code is widely used

 But it’s also a lot of work

