Experiences of a x86 maintainer

Feb 2009

Andi Kleen, Intel Open Source Technology Center
andi@firstfloor.org

Disclaimer

O This happened all before | joined Intel

O Not an Intel project

O Not speaking for Intel

What I1s a Linux maintainer?

O Patch collector
O Release manager for a subsystem

O Architect

O Default blamee

O Politician

O Sends patches for a subsystem to Linus

O But not absolute control over code
o Linus and some other people can overrule
O Sometimes hard to not merge patches

More on maintainers

0On a larger project spending a lot of time on administrativa

O ANnd code review

O Not that much time to code anymore
o For large subsystems

O For complex projects also has to sub-delegate some areas
O Become a middle manager

Code review

O... 1s hard work

Orequired to keep linux coding standards up

O Normally would like to have reviewers on mailing lists do it

O Often the maintainer has to do the bulk of it in the end

O Iterates until code is acceptable
O Takes a lot of time

O Code reviewing on mailing list is an important contribution!

X806 maintenance

O Originally just worked on x86-64

O Project started with no clear kernel maintainer
o Just a group of engineers

O Maintainer needed as interface to the outside world

(0x86-64 kernel maintainer
O but also x86-64 gcc/glibc/gdb/... maintainers

O Became defacto 1386 maintainer too

Release trees

0 Old
O 2.4 tree main work
O unstable 2.5 tree completely different
O some distribution trees with lots of backports

O New

02.6.XVS 2.6.x+1
o Distribution trees
o0 3 month cycles

Phases of the project

O From novelty to commodity
O Complexity rising significantly
o Not as much in the code
o But in the platforms that need to work
O Interaction with other subsystems takes more and more time
O Farmed out some work
o For example ACPI took over a lot of BIOS issues

From single platform to (nearly) everywhere

O First implementation on simulator
O Then long time hiatus

O Then single hardware platform

O Then multiple platforms

O Then mass market with many more platforms
O Today (nearly) everywhere in PC space

How It started

O Initially mostly removing code from a copy of arch/i386
O Goal was to get rid of old hardware workarounds
O To get a cleaner and more manageable software
O Implemented 64bit support
o done by a team
o Various code areas redesigned
O Then was alone on the kernel side for over a year

o Simulator only
O Especially 2.5 was tough

Headaches

O New chipsets
O Many new chipsets have one quirk or another
o Especially those from smaller vendors

OBIOS

o If Windows doesn’'t use it ...
o Servers are better than clients
O The cheaper the system the worse the BIOS

> But even expensive systems often have bad bugs
O A lot of BIOS workarounds

O Luckily significant part of it was handled by ACPI team
> But still a lot of of non ACPI BIOS issues

32bit x86 maintenance

01386 didn’t have a dedicated maintainer
oresulted in some substandard code being merged

O Did 1386 maintenance on the side
o Primary focus was still on 64bit

O Plan to add 32bit support to 64bit

O Get cleaner codebase
O Never happened due to time constraints

Compat layer

O Allows to run 32bit x86 software under 64bit kernel
O In theory everything free can be recompiled...
O but in practice it's often not as easy
O Based on sparc compat layer
O Not auto generated
098%+ compatible
OWine was an interesting experience

O First Solitaire
O More compatible than the original

O Learned a lot of corner cases

Compat layer problems

O The kernel compat layer is quite good
O But relies on distributions shipping shared 32bit libraries
o Didn’t spend enough effort educating
0 Some popular distributions don’t ship 32bit compat libraries

O Large adoption hurdle for 64bit today

Bug management

O... Still remember the day when | realized | couldn’t keep track of
all bugs anymore

O Originally just bug list in a text file

O Then later handled by various people

o Was difficult to track regressions
o and determine release readiness

0 Some bugs later handled in bugzilla

O Most Linux subsystems still do it informally
o ACPI is the main exception

O Also emergence of central bug masters

O Bug management is important

Last thoughts

O It’s very motivating when your code is widely used

O But it’s also a lot of work

